ALPHA EMITTERS RADIOACTIVITY CONCENTRATIONS IN SOME COSMETICS USED IN IRAQ USING LR-115 DETECTOR

Malik H. Kheder, Hanaa N. Azeez, Firas M. Al-Jomaily

Abstract


Cosmetics play an important role of human external appearance, its products used to alter or enhance the facial appearance or the body and skincare, currently worldwide consumed with frequently use increasing the human body exposure to the various chemical elements including radioactive substances. This research aimed to measure the concentrations of alpha emitters, and the annual effective dose AED resulting from radon intake. LR-115 track detector used to measure radon, and radium concentrations in 20 cosmetics samples selected from markets. In this work the concentrations of radon in the samples found to vary from 9.876 to 30.97 Bq/m3 with 22.11 Bq/m3 a mean value, this mean value is a very small than 100 Bq/m3 the reference level limits of the World Health Organization (WHO). The annual radon effective dose varied between 0.249–0.781 mSv/y which is within the range of 0.2-10 mSv/y (UNSCEAR). Radium contents vary between 0.041–0.249 Bq/Kg with 0.115 Bq/Kg as a mean value. This work identified law measured concentrations of radionuclide present in cosmetics showed its safe for use

Keywords


radium concentration; effective radon dose; LR-115 detector; cosmetics; radon concentration

Full Text:

PDF

References


Gagliardi, L., Dorato, S. (2007). General Concepts. Current Legislation on Cosmetics in Different Countries. Analysis of Cosmetic Products, 3–28. doi: https://doi.org/10.1016/b978-044452260-3/50024-3

Patil, A. S., Patil, A. V., Patil, A. H. et. al. (2017). A review on: standerdization of herb in new era of cosmaceuticals: herbal cosmetics. World Journal of Pharmaceutical Research, 6 (12), 303–320.

Fathima, A., Varma, S., Jagannath, P., Akash, M. (2011). General Review on Herbal Cosmetics. International journal of drug formulation and research, 2 (5), 140–165.

Jain, N., Chaudhri, S. (2009). History of cosmetics. Asian Journal of Pharmaceutics, 3 (3), 164. doi: https://doi.org/10.4103/0973-8398.56292

Dar, A. M. (2011). Cosmetic Chemistry: An Instant Approach. Educreation Publishing, 161. Available at: https://books.google.iq/books?id=MZ9NDwAAQBAJ

Nouioui, M. A., Mahjoubi, S., Ghorbel, A., Ben Haj Yahia, M., Amira, D., Ghorbel, H., Hedhili, A. (2016). Health Risk Assessment of Heavy Metals in Traditional Cosmetics Sold in Tunisian Local Markets. International Scholarly Research Notices, 2016, 1–12. doi: https://doi.org/10.1155/2016/6296458

Hardy, A. D., Walton, R. I., Vaishnay, R., Myers, K. A., Power, M. R., Pirrie, D. (2006). Chapter 5 Egyptian eye cosmetics (“Kohls”): Past and present. Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, 173–203. doi: https://doi.org/10.1016/s1871-1731(06)80006-0

Rentetzi, M. (2008). Trafficking Materials and Gendered Experimental Practices: Radium Research in Early 20th Century Vienna. New York: Columbia University Press.

Thiemann, A. I Fictionalizing Global Climate Change.

Genet, M. (1998). Radium: A Miracle Cure {exclamation_point}.

Hallenbeck, W. H. (1993). Quantitative Risk Assessment for Environmental and Occupational Health. CRC Press, 240. doi: https://doi.org/10.1201/9781482264494

Martin, A., Harbison, S. A. (1996). The internal radiation hazard. An Introduction to Radiation Protection, 97–118. doi: https://doi.org/10.1007/978-1-4899-4543-3_9

Vogiannis, E. G., Nikolopoulos, D. (2015). Radon Sources and Associated Risk in Terms of Exposure and Dose. Frontiers in Public Health, 2. doi: https://doi.org/10.3389/fpubh.2014.00207

Nikezic, D., Yu, K. N., Stajic, J. M. (2014). Computer program for the sensitivity calculation of a CR-39 detector in a diffusion chamber for radon measurements. Review of Scientific Instruments, 85 (2), 022102. doi: https://doi.org/10.1063/1.4865157

Mansy, M., Sharaf, M. A., Eissa, H. M., El-Kamees, S. U., Abo-Elmagd, M. (2006). Theoretical calculation of SSNTD response for radon measurements and optimum diffusion chambers dimensions. Radiation Measurements, 41 (2), 222–228. doi: https://doi.org/10.1016/j.radmeas.2005.04.004

Somogyi, G., Hafez, A.-F., Hunyadi, I., Tóth-Szilágyi, M. (1986). Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 12 (1-6), 701–704. doi: https://doi.org/10.1016/1359-0189(86)90683-7

Kheder, M. H., Ahmad, A. M., Azeez, H. N., Slewa, M. Y., Badr, B. A., Sleeman, S. Y. (2019). Radon and uranium concentration in ground water of nineveh plain region in iraq. Journal of Physics: Conference Series, 1234, 012033. doi: https://doi.org/10.1088/1742-6596/1234/1/012033

Kheder, M. H. (2019). Measurement of Radon Concentration Using SSNTD in Bartella Region. Al-Mustansiriyah Journal of Science, 29 (4), 110. doi: https://doi.org/10.23851/mjs.v29i4.357

Andrade, E., Miró, C., Reis, M., Santos, M., Madruga, M. J. (2017). Assessment of radium activity concentration and radon exhalation rates in iberian peninsula building materials. Radiation Protection Dosimetry, 177 (1-2), 31–35. doi: https://doi.org/10.1093/rpd/ncx128

Azeez, H. N., Kheder, M. H., Slewa, M. Y., Sleeman, S. Y. (2018). Radon Concentration Measurement in Ainkawa Region Using Solid State Nuclear Track Detector. Iraqi Journal of Science, 59 (1C), 482–488. doi: https://doi.org/10.24996/ijs.2018.59.1c.4

Radiation, United Nations. Scientific Committee on the Effects of Atomic. 2000. 1 Sources and Effects of Ionizing Radiation: Sources. United Nations Publications.

Shakir, A. A., Kadhim, I. H., Almayyalin, A. O. M., Majeed, F. A. (2016). Measurement of Radon Concentration in Some of Cosmetics by Using Nuclear Track Detector (CR-39). International Journal of PharmTech Research, 9 (9), 231–235. Available at: http://www.sphinxsai.com/2016/ph_vol9_no9/1/(231-235)V9N9PT.pdf

Seoud, M. S. (2018). Health Risk Assessment of Radon-222 Concentration in Some Imported Cosmetics by Using Nuclear Track Detector (CR-39). SciFed Journal of Nuclear Science, 2 (2).

WHO Handbook on Indoor Radon: A Public Health Perspective (2009). World Health Organization.

Milena-Pérez, A., Martínez-Martínez, B. R., Álvarez, E., Expósito-Suárez, V. M., Piñero-García, F., Ferro-García, M. A. (2019). Natural radium isotopes present in some cosmetic products: determination of activity concentration and dose estimation. Radiation Protection Dosimetry. doi: https://doi.org/10.1093/rpd/ncz133

Sherif, M. M., Orabi, M., Abdurahem, O. R. (2015). Study of Heavy Elements and Radioactivity Concentrations in Some Eye Cosmetics Commonly Used in Arabic Regions. International Journal of Chemical Engineering and Applications, 6 (1), 66–70. doi: https://doi.org/10.7763/ijcea.2015.v6.453




DOI: http://dx.doi.org/10.21303/2461-4262.2020.001171

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Malik H. Kheder, Hanaa N. Azeez, Firas M. Al-Jomaily

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)