DETERMINATION OF MECHANICAL PROPERTIES OF REPAIR MORTARS USING IN SITU METHODS UNDER DIFFERENT CURINGS
Abstract
Keywords
Full Text:
PDFReferences
ASTM C42/C42M-18a. Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete (2018). ASTM International. doi: http://doi.org/10.1520/C0042_C0042M-18A
Masi, A., Digrisolo, A., Santarsiero, G. (2013). Experimental Evaluation of Drilling Damage on the Strength of Cores Extracted from RC Buildings. World Academy of Science, Engineering and Technology International Journal of Structural and Construction Engineering, 7 (7), 525–531.
ASTM C900-15. Standard Test Method for Pullout Strength of Hardened Concrete (2015). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0900-15
ASTM C597-16. Standard Test Method for Pulse Velocity through Concrete (2016). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0597-16
ASTM C808/C805M-18. Standard Test Method for Rebound Number of Hardened Concrete (2018). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0805_C0805M-18
Naderi, M. (2005). Friction-transfer test for the assessment of in situ strength and adhesion of cementitious materials. Construction and Building Materials, 19 (6), 454–459. doi: https://doi.org/10.1016/j.conbuildmat.2004.07.018
ASTM C1583-04. Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (Pull-off method) (2004). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C1583-04
Naderi, M. (2011). Non-Destructive Evaluation of Engineering Properties of Intact Rock Using the Friction-Transfer Method. Arabian Journal for Science and Engineering, 36 (2), 215–226. doi: https://doi.org/10.1007/s13369-010-0021-9
Eskandari-Naddaf, H., Kazemi, R. (2018). Experimental evaluation of the effect of mix design ratios on compressive strength of cement mortars containing cement strength class 42.5 and 52.5 MPa. Procedia Manufacturing, 22, 392–398. doi: https://doi.org/10.1016/j.promfg.2018.03.060
Still, G. T. (2004). Strength of cementitious mortars: a literature review with special reference to weak mortars in tension. United Kingdom, University of Warwick, Coventry, CV4 7AL.
Kim, Y.-Y., Lee, K.-M., Bang, J.-W., Kwon, S.-J. (2014). Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount. Advances in Materials Science and Engineering, 2014, 1–11. doi: https://doi.org/10.1155/2014/273460
Mannan, M. A., Basri, H. B., Zain, M. F. M., Islam, M. N. (2002). Effect of curing conditions on the properties of OPS-concrete. Building and Environment, 37 (11), 1167–1171. doi: https://doi.org/10.1016/s0360-1323(01)00078-6
Neville, A. M. (1992). Properties of concrete. USA: Longman Scientific and Technical.
ASTM C136-01. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates (2001). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0136-01
ASTM C127-15. Standard test method for relative density (specific gravity) and absorption of coarse aggregate (2015). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0127-15
ASTM C127-12. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0127-12
ASTM C348-19. Standard test method for Flexural Strength of Hydraulic-Cement Mortars (2019). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0348-19
ASTM C190. Method of Test for Tensile Strength of Hydraulic Cement Mortars (Withdrawn 1990) (1985). American Society for Testing and Materials.
ASTM C109/C109M-13. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (2013). ASTM International, West Conshohocken, PA. doi: http://doi.org/10.1520/C0109_C0109M-13
Han, V., Ros, S., Shima, H. (2013). Effects of Sand Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar. ACI Materials Journal, 110 (1). doi: https://doi.org/10.14359/51684363
Çakır, Ö., Aköz, F. (2008). Effect of curing conditions on the mortars with and without GGBFS. Construction and Building Materials, 22 (3), 308–314. doi: https://doi.org/10.1016/j.conbuildmat.2006.08.013
Neville, A. M., Brooks, J. J. (2015). Concrete technology. Pearson Education Canada, 464.
DOI: http://dx.doi.org/10.21303/2461-4262.2020.001190
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Ali Saberi Varzaneh, Mahmoud Naderi

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)