TASKS STATEMENT FOR MODERN AUTOMATIC CONTROL THEORY OF UNDERWATER COMPLEXES WITH FLEXIBLE TETHERS

  • Valery Dudykevych Lviv Polytechnic National University, Ukraine
  • Blintsov Oleksandr Lviv Polytechnic National University, Ukraine
Keywords: underwater complex, flexible tether, automatic control system, underwater vehicle

Abstract

The definition of a new class of control objects is proposed. It is an underwater complex with flexible tethers (UCFT) for which there is the need to automate motion control under uncertainty and nonstationarity of own parameters and external disturbances. Classification of marine mobile objects and characteristics of the flexible tethers as UCFT elements is given.

The basic UCFTs configurations that are used in the implementation of advanced underwater technologies are revealed. They include single-, double- and three-linked structures with surface or underwater support vessels and self-propelled or towed underwater vehicles.

The role of mathematical modeling in tasks of motion control automation is shown. The tasks of UCFT mathematical modeling are formulated for synthesis and study of its automatic control systems. Generalized structures of mathematical models of UCFT basic elements are proposed as the basis for the creation of simulating complex to study the dynamics of its motion.

The tasks of UCFT identification as a control object are formulated. Their consistent solution will help to obtain a UCFT mathematical model.

The basic requirements for UCFT automatic motion control systems are determined. Their satisfaction will ensure implementation of selected underwater technology.

Areas of development of synthesis methods of UCFT automatic control systems are highlighted.

Downloads

Download data is not yet available.

Author Biographies

Valery Dudykevych, Lviv Polytechnic National University

Department of Information Security

Blintsov Oleksandr, Lviv Polytechnic National University

Department of Information Security

References

Blintsov, V. S. (1998). Privjaznye podvodnye sistemy. Kyiv: Naukova dumka, 142.

Rowinski, L. (2008). Pojazdy glebinowe. Budowa i wyposazenie. Gdansk: Przedsiebiorstwo Prywatne “WiB”, 593.

Antonelli, G. (2014). Underwater robots. 3rd edition. Springer tracts in advanced robotics. 279. doi: 10.1007/978-3-319-02877-4

Liu, Z., Zhang, Y., Yu, X., Yuan, C. (2016). Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71–93. doi: 10.1016/j.arcontrol.2016.04.018

Lyahov, D. G., Kim, A. I., Minaev, D. D. (2014). Razrabotka i ispyitaniya sverhmalogo teleupravlyaemogo korablya. Podvodnyie issledovaniya i robototehnika, 1 (17), 48–57.

Ramesh, R., Ramadass, N., Sathianarayanan, D., Vedachalam, N., Ramadass, G. A. (2013). Heading control of ROV ROSUB6000 using non-linear model-aided PD approach. International Journal of Emerging Technology and Advanced Engineering, 3 (4), 382–393.

Nadtochij, V. A. (2014). Syntez reghuljatora dyferentu pidvodnogho aparatu pry roboti zovnishnjogho nachipnogho obladnannja. Elektronne vydannja «Visnyk NUK», 3, 5. doi: 10.15589/evn20140309

Soltan, R. A., Ashrafiuon, H., Muske, K. R. (2011). ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels. Robotica, 29 (5), 691 703. doi: 10.1017/S0263574710000585

García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L., Hernández-Alvarado, R., Cruz-Ledesma, J. A. (2014). Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle. International Journal of Advanced Robotic Systems, 11 (1), 16. doi: 10.5772/56810

Bessa, W. M., Dutra, M. S., Kreuzer, E. (2008). Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robotics and Autonomous Systems, 56, 670–677. doi: 10.1016/j.robot.2007.11.004

Bessa, W. M., Dutra, M. S., Kreuzer, E. (2013). Dynamic positioning of underwater robotic vehicles with thruster dynamics compensation. International Journal of Advanced Robotic Systems, 10:325, 8. doi: 10.5772/56601

Do, K. D. (2011). Global robust and adaptive output feedback dynamic positioning of surface ships. Journal of Marine Science and Application, 10(3), 325–332. doi: 10.1007/s11804-011-1076-z

Veremey, E. I. (2014). Dynamical correction of control laws for marine ship’s accurate steering, Journal of Marine Science and Application, 13 (2), 127–133. doi: 10.1007/s11804-014-1250-1

Blintsov, S. V., Tkhy, D. F. (2013). Avtomatyzacija keruvannja pidvodnym aparatom v umovakh nevyznachenosti jogho parametriv. Zbirnyk naukovykh prac' NUK, 4, 89–93.

Blintsov, V. S. Magula, V. E. (1997). Proektirovanie samohodnyih privyaznyih podvodnyih sistem. Kyiv: Naukova dumka, 140.

Sidenko, K. S., Laptev K. Z., Illarionov G. Yu. (2009). Upravlyaemyie po kabelyu neobitaemyie podvodnyie apparaty dlya poiska i unichtozheniya min. Dvoynyie tehnologii, 3 (48), 17–27.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Norway: John Wiley and Sons Ltd. 596. doi: 10.1002/9781119994138

Vaguschenko, L. L. (2007). Sistemy avtomaticheskogo upravleniya dvizheniem sudna. 3rd edition. Odessa: Feniks, 328.

Blintsov, A. V. (2013). Analiz privyaznyh podvodnyih sistem kak ob'ektov upravleniya. Pyataya Vserossiyskaya nauchno-tehnicheskaya konferentsiya «Tehnicheskie problemy osvoeniya mirovogo okeana»: materialy konferentsii, 160 163.

Yu, Zh., Amdahl, J. (2016). Full six degrees of freedom coupled dynamic simulation of ship collision and grounding accidents. Marine Structures, 47, 1–22. doi: 10.1016/j.marstruc.2016.03.001

Thekkedan, M. D., Chin, C. S., Woo, W. L. (2015). Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning. Journal of Marine Science and Application, 14 (1), 14–24. doi: 10.1007/s11804-015-1297-7

Blintsov, O. V. (2012). Matematychna modelj dynamiky prostorovogho rukhu kabelj-trosa pryv'jaznoji pidvodnoji systemy. Zbirnyk naukovykh pracj NUK, 5-6 (445), 61–63.

Blintsov, O. V., Nadtochij, V. A. (2013). Systema avtomatychnogho keruvannja kabeljnoju lebidkoju pryv'jaznoji pidvodnoji systemy. Zbirnyk naukovykh pracj NUK, 1, 77–82.

Stern, F., Yang, J., Wang, Z., Sadat-Hosseini, H., Mousaviraad, M., Bhushan, S. (2013). Computational ship hydrodynamics: nowadays and way forward. International Shipbuilding Progress, 60 (1-4), 3–105. doi: 10.3233/ISP-130090

Besekerskiy, V. A., Popov, E. P. (2003). Teoriya sistem avtomaticheskogo upravleniya. Saint. Petersburg: Professiya, 752.

Vaulin, Yu. V., Kostenko, V. V., Pavin, A. M. (2013). Osobennosti navigatsionnogo i algoritmicheskogo obespecheniya teleupravlyaemogo neobitaemogo podvodnogo apparata. Podvodnyie issledovaniya i robototehnika, 2 (16), 4–16.

Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2014). Sliding mode control and observation, control engineering. Basel: Birkhäuser, 356. doi: 10.1007/978-0-8176-4893-0

Park, B. S. (2014). Neural network-based tracking control of underactuated autonomous underwater vehicles with model uncertainties. Journal of Dynamic Systems, Measurement, and Control, 137 (2), 021004. doi: 10.1115/1.4027919

Blintsov, O. (2016). Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes. Eastern-European Journal of Enterprise Technologies, 4 (2 (82)), 42–50. doi: 10.15587/1729-4061.2016.74875

Calvo-Rolle, J. L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro Berdiñas, B. (2014). Adaptive inverse control using an online learning algorithm for neural networks. Informatica, 25 (3), 401–414. doi: 10.15388/informatica.2014.20

Kusumoputro, B., Priandana, K. (2015). Direct inverse neural network control of a double propeller boat model using a backpropagation neural networks. International Journal of Information Technology and Computer Science, 22 (1). Avaialble at: http://ijitcs.com/volume%2022_No_1/Benyamin%20Kusumoputro.pdf

Blintsov, S. V. (2014). Teoretichni osnovy avtomatichnogo keruvannya avtonomnymy pidvodnymy aparatamy: monografiya. Mikolayiv: NUK, 222.


👁 913
⬇ 502
Published
2016-09-30
How to Cite
Dudykevych, V., & Oleksandr, B. (2016). TASKS STATEMENT FOR MODERN AUTOMATIC CONTROL THEORY OF UNDERWATER COMPLEXES WITH FLEXIBLE TETHERS. EUREKA: Physics and Engineering, (5), 25-36. https://doi.org/10.21303/2461-4262.2016.00158
Section
Computer Sciences and Mathematics