PHOTONIC CRYSTAL AND PHOTONIC CRYSTAL FIBERS COMMUNICATIONS
Abstract
The development of all optical communications could benefit from the index guiding photonic crystal fibers. In communication the photonic crystal fibers could provide many new solutions. Conventional optical fibers have within the last decades revolutionized the communications industry and it is today a mature technology being pushed to its limit with respect to properties such as losses, single mode operation and dispersion. The spectra have been used by others to develop optical frequency standards. The process can potentially be used for frequency conversion in fiber optic network. In this system the dispersive properties can be controlled by the optical lattice making it possible to achieve phase-matched four wave mixing, like look the process taking place in the photonic crystal fibers. In this paper we will discuss the use of photonic crystal fibers in communications.
Keywords
References
David J. DiGiovanni, Santanu K. Das, Lee L. Blyler, W. White, Raymond K. Boncek, Steven E. Golowich (2002). ‘Design of optical fibers for communication systems’, in I. P. Kaminow and T. Li (Eds), Optical Fiber Telecommunications IV-A, 17–79, Academic Press, 2002. doi: 10.1016/b978-012395172-4/50002-4
Richardson, D. J., Monro, T. M., Belardi, W., Furusawa, K. (2002). ‘Holey fibers: new possibilities for guiding and manipulating light’, Proc. IEEE/LEOS Workshop on Fiber and Optical Passive Components, 169–175. doi: 10.1109/fopc.2002.1015822
Morishita, K., Miyake, Y. (2004). ‘Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change’, J. Lightwave Technol., Vol. 22, Issue 2, 625–630. doi: 10.1109/jlt.2004.824389
Tao, L., Zakharian, A. R., M. Fallahi, Moloney, J. V., Mansuripur, M. (2004). ‘Multimode interfer-encebased photonic crystal waveguide power splitter’, Journal of Lightwave Technology, Vol. 22, Issue 12, 2842–2846. doi: 10.1109/jlt.2004.834479
Mahnkopf, S., Marz, R., Kamp, M., Guang, H. D., Lelarge, F., Forchel, A. ‘Tunable photonic crystal coupled-cavity laser’, IEEE J. Quantum Electron, Vol. 40, Issue 9, 1306–1314, 2004. doi:10.1109/jqe.2004.831638
Cucinotta, A., Poli, F., Selleri, S. (2004). ‘Design of erbium-doped triangular photonic-crystal-fiberbased amplifiers’, IEEE Photonics Technology Letters, Vol. 16, Issue 9, 2027–2029. doi: 10.1109/lpt.2004.833109
Bong-Shik, S., Asano, T., Akahane, Y., Tanaka, Y., Noda, S. (2005). ‘Multichannel add/drop filter based on in-plane hetero photonic crystals’, Journal of Lightwave Technology, Vol. 23, Issue 3, 1449–1455. doi: 10.1109/jlt.2004.841458
Chow, K. K., Shu, C., Chinlon, L., Bjarklev, A. (2005). ‘Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber’, IEEE Photonics Technology Letters, Vol. 17, Issue 3, 624–626. doi: 10.1109/lpt.2004.840929
Niemi, T., Frandsen, L. H., Hede, K. K., Harpoth, A., Borel, P. I., Kristensen, M. (2006). ‘Wavelength division demultiplexing using photonic crystal waveguides’, IEEE Photonics Technology Letters, Vol. 18, Issue 1, 226–228. doi: 10.1109/lpt.2005.860001
Kurokawa, K., Tajima, K., Tsujikawa, K., Nakajima, K., Matsui, T., Sankawa, I., Haibara, T. (2006). ‘Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF’, Journal of Lightwave Technology, Vol. 24, Issue 1, 32–37. doi: 10.1109/jlt.2005.861146
Kapany, N. S. (1967). Fiber Optics: Principles and Applications, Academic Press,
San Diego, CA.
Kao, K. C., Hockham, G. A. (1966). Proc. IEE 113, 1151; Werts, A. Onde Electr, 45, 967.
Kapron, F. P., Keck, D. B., Maurer, R. D. (1970). radiation losses in glass optical waveguides. Applied Physics Letters, Vol. 17, Issue 10, 423. doi: 10.1063/1.1653255
Miya, T., Terunuma, Y., Hosaka, T., Miyoshita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, Vol. 15, Issue 4, 106. doi: 10.1049/el:19790077
Adams, M. J. (1981). An Introduction to Optical Waveguides, Wiley, New York.
Yablonovitch, E. (1987)."Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Physical Review Letters, Vol. 58, Issue 20, 2059–2062. doi: 10.1103/physrevlett.58.2059
Yablonovitch, E., Gmitter, T. J., Leung, K. M. (1991)."Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms," Physical Review Letters, Vol. 67, Issue 17, 2295–2298. doi: 10.1103/physrevlett.67.2295
Danner, A. J., Raftery, Jr. J. J., Yokouchi, N., Choquette, K. D. (2004). Transverse modes of photonic crystal vertical-cavity lasers. Applied Physics Letters, Vol. 84, Issue 7, 1031–1033. doi: 10.1063/1.1646729
Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E. (1995). Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, Vol. 269, Issue 5221, 198–201. doi: 10.1126/science.269.5221.198
Davis, K., Mewes, M.-O., Andrews, M., N. van Druten, Durfee, D., Kurn, D., Ketterle, W. (1995). Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters, Vol. 75, Issue 22, 3969–3973. doi: 10.1103/physrevlett.75.3969
Russell, P. S. J. (2003). “Photonic Crystal Fibres”. Science, Vol. 299, Issue 5605, 358–362. doi: 10.1126/science.1079280
Russell, P. S. J. (2006). Photonic-Crystal Fibers. Journal of Lightwave Technology, Vol. 24, Issue 12, 4729–4749. doi: 10.1109/jlt.2006.885258
Knight, J. C., Broeng, J., Birks, T. A., Russell, P. S. J. (1998). Science, Vol. 282, 1476.
Konorov, S. O., Fedotov, A. B., Kolevatova, O. A., Beloglazov, V. I., Skibina, N. B., Shcherbakov, A. V., Zheltikov, A. M. (2002). Waveguide modes of hollow photonic-crystal fibers. Journal of Experimental and Theoretical Physics Letters, Vol. 76, Issue 6, 341–345. doi: 10.1134/1.1525033
Litchinitser, N. M., Abeeluck, A. K., Headley, C., Eggleton, B. J. (2002). Antiresonant reflecting pho-tonic crystal optical waveguides. Optics Letters, Vol. 27, Issue 18, 1592. doi: 10.1364/ol.27.001592
Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., Allan, D. A. (1999). Science, Vol. 285, 1537.
Zheltikov, A. M. (2004). Isolated waveguide modes of high-intensity light fields. Physics-Uspekhi, Vol. 47, Issue 12, 1205–1220. doi: 10.1070/pu2004v047n12abeh001917
Marcatili, E. A. J., Schmeltzer, R. A. (1964). Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers. Bell System Technical Journal, Vol. 43, Issue 4, 1783–1809. doi: 10.1002/j.1538-7305.1964.tb04108.x
Adams, M. J. (1981). An Introduction to Optical Waveguides, Wiley: New York.
Zheltikov, A. M. (2004). Nonlinear optics of microstructure fibers. Physics-Uspekhi, Vol. 47, Issue 1, 69–98. doi: 10.1070/pu2004v047n01abeh001731
Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, Vol. 21, Issue 19, 1547. doi: 10.1364/ol.21.001547
Birks, T. A., Knight, J. C., Russell, P. S. J. (1997). Endlessly single-mode photonic crystal fiber. Op-tics Letters, Vol. 22, Issue 13, 961. doi: 10.1364/ol.22.000961
Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A. (2003). All fiber chirped-pulse am-plification system based on compression in air-guiding photonic bandgap fiber. Optics Express, Vol. 11, Issue 24, 3332. doi: 10.1364/oe.11.003332
de Matos, C. J. S., Popov, S. V., Rulkov, A. B., Taylor, J. R., Broeng, J., Hansen, T. P., Gapontsev, V. P. (2004). All-Fiber Format Compression of Frequency Chirped Pulses in Air-Guiding Photonic Crystal Fibers. Physical Review Letters, Vol. 93, Issue 10. doi: 10.1103/physrevlett.93.103901
Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, Vol. 10, Issue 25, 1520. doi: 10.1364/oe.10.001520
Cregan, R. F., Mangan, B. J. , Knight, J. C., Birks, T. A., Russell, P. St. J., Roberts, P. J., Allan, D. C. (1999). Singlemode photonic band gap guidance of light in air. Science, Vol. 285, Issue 5433, 1537–1539. doi: 10.1126/science.285.5433.1537
Payne, F. P., Lacey, J. P. R. (1994). A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics, Vol. 26, Issue 10, 977–986. doi: 10.1007/bf00708339
Bjarklev, A., Broeng, J., Bjarklev, A. S. (2003). Photonic crystal fibres (Kluwer Academic Publishers, Boston). doi: 10.1007/978-1-4615-0475-7
Knight, J. C., Birks, T. A., Russell, P. S. J., J. P. de Sandro (1998). Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A, Vol. 15, Issue 3, 748. doi: 10.1364/josaa.15.000748
Birks, T. A., Knight, J. C., Russell, P. S. J. (1997). Endlessly single-mode photonic crystal fiber. Op-tics Letters, Vol. 22, Issue 13, 961. doi: 10.1364/ol.22.000961
Blow, K. J., Wood, D. (1989). Theoretical description of transient stimulated Raman scattering in op-tical fibers. IEEE Journal of Quantum Electronics, Vol. 25, Issue 12, 2665–2673. doi: 10.1109/3.40655
Agrawal, G. P. (2001). Nonlinear Fiber Optics (Academic Press), 3rd ed.
Buckland, E. L., Boyd, R. W. (1996). Electrostrictive contribution to the intensity-dependent refractive index of optical fibers. Optics Letters, Vol. 21, Issue 15, 1117. doi: 10.1364/ol.21.001117
Buckland, E. L., Boyd, R. W. (1997). Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers. Optics Letters, Vol. 22, Issue 10, 676. doi: 10.1364/ol.22.000676
Gfeller, F. R., Bapst, U. (1979). Wireless in-house communication via diffuse infrared radiation. Proceedings of the IEEE, Vol. 67, Issue 11, 1474–1486. doi: 10.1109/proc.1979.11508
DOI: http://dx.doi.org/10.21303/2461-4262.2016.00020
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Haider Ali Muse

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)


