SCHRÖDINGER EQUATION FOR PROPAGATION IN PHOTONIC CRYSTAL FIBERS

Waleed Ahmed Mahmoud Alrefai

Abstract


The propagation of light in a guided medium is generally described by the Maxwell’s equations. For long lengths of fiber, the Nonlinear Schrödinger (NLS) wave equation is typically derived under a few approximations on the waveguide properties of the guiding medium. In theoretical physics, the nonlinear Schrödinger equation is a nonlinear variation of the Schrödinger equation. The propagation of the wave is a fundamental phenomenon occurring in several physical systems. It is a classical field equation whose principal applications are to the propagation of light in nonlinear planar waveguides and optical fibers to the Bose-Einstein condensates confined to highly anisotropic cigar-shaped traps in the mean-field regime. We will focus on the Schrödinger equation for signal propagation in photonic crystal fibers.


Keywords


Schrödinger; nonlinear optics; propagation; photonic crystal; Maxwell's

Full Text:

PDF FIGURES

References


Rayleigh, J. W. S. (1888). On the Remarkable Phenomenon of Crystalline Reflexion described by Prof. Stokes. Philosophical Magazine, Vol. 26, Issue 160, 256–265. doi: 10.1080/14786448808628259

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, Vol. 58, Issue 20, 2059–2062. doi: 10.1103/physrevlett.58.2059

Joannopoulos, J. et al. (1995). Photonic Crystals. Princeton Press, Princeton, N. J.

Russell, P. S. J. (2003). Photonic Crystal Fibres. Science, Vol. 299, Issue 5605, 358–362 (2003). doi: 10.1126/science.1079280

Russell, P. S. J. (2006). Photonic-Crystal Fibers. Journal of Lightwave Technology, Vol. 24, Issue 12, 4729–4749. doi: 10.1109/jlt.2006.885258

Knight, J. C., Broeng, J., Birks, T. A., Russell, P. S. J. (1998). Science, Vol. 282, 1476.

Konorov, S. O., Fedotov, A. B., Kolevatova, O. A., Beloglazov, V. I., Skibina, N. B., Shcherbakov, A. V., Zheltikov, A. M. (2002). Waveguide modes of hollow photonic-crystal fibers. Journal of Experimental and Theoretical Physics Letters, Vol. 76, Issue 6, 341–345. doi: 10.1134/1.1525033

Litchinitser, N. M., Abeeluck, A. K., Headley, C., Eggleton, B. J. (2002). Antiresonant reflecting pho-tonic crystal optical waveguidesOptics Letters, Vol. 27, Issue 18, 1592. doi: 10.1364/ol.27.001592

Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., Allan, D. A. (1999). Science Vol. 285, 1537.

Zheltikov, A. M. (2004). Isolated waveguide modes of high-intensity light fields. Physics-Uspekhi, Vol. 47, Issue 12, 1205–1220. doi: 10.1070/pu2004v047n12abeh001917

Luan, F., George, A. K., Hedley, T. D., Pearce, G. J., Bird, D. M., Knight, J. C., Russell, P. S. J. (2004). All-solid photonic bandgap fiber. Optics Letters, Vol. 29, Issue 20, 2369. doi: 10.1364/ol.29.002369

Marcatili, E. A. J., Schmeltzer, R. A. (1964). Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers. Bell System Technical Journal, Vol. 43, Issue 4, 1783–1809. doi: 10.1002/j.1538-7305.1964.tb04108.x

Adams, M. J. (1981). An Introduction to Optical Waveguides, Wiley: New York.

Zheltikov, A. M. (2004). Nonlinear optics of microstructure fibers. Physics-Uspekhi, Vol. 47, Issue 1, 69–98. doi: 10.1070/pu2004v047n01abeh001731

Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, Vol. 21, Issue 19, 1547. doi: 10.1364/ol.21.001547

Ferrando, A., Silvestre, E., Miret, J. J., Andres, P. (2000). Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters, Vol. 25, Issue 11, 790. doi: 10.1364/ol.25.000790

Reeves, W. H., Skryabin, D. V., Biancalana, F., Knight, J. C., Russell, P. S. J., Omenetto, F. G., Efimov, A., Taylor, A. J. (2003). Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature, Vol. 424, Issue 6948, 511–515. doi: 10.1038/nature01798

Fedotov, A. B., Zheltikov, A. M., Tarasevitch, A. P., von der Linde, D. (2001). Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers. Applied Physics B, Vol. 73, Issue 2, 181–184. doi: 10.1007/s003400100629

Joannopoulos, J. D., Meade, R. D., Winn, J. N. (1995). Photonic crystals – molding the flow of light (Princeton University Press), 1st ed.

Sakoda, K. (2001). Optical properties of photonic crystals. Springer Series in Optical Sciences, 1sted. doi: 10.1007/978-3-662-14324-7

Johnson, S. G. Joannopoulos, J. D. (2001). Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis Optics Express, Vol. 8, Issue 3, 173. doi: 10.1364/oe.8.000173

Johnson, S. G. Joannopoulos, J. D. (URL http://ab-initio.mit.edu/mpb/).

Mortensen, N. A. (2002). Effective area of photonic crystal fibers. Optics Express, Vol. 10, Issue 7, 341. doi: 10.1364/oe.10.000341

Agrawal, G. P. (2001). Nonlinear Fiber Optics (Academic Press), 3rd ed.

Blow K. J., Wood, D. (1989). Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE Journal of Quantum Electronics, Vol. 25, Issue 12, 2665–2673. doi: 10.1109/3.40655

Mamyshev, P. V., Chernikov, S. V. (1990). Ultrashort-pulse propagation in optical fibers. Optics Let-ters, Vol. 15, Issue 19, 1076. doi: 10.1364/ol.15.001076

Mollenauer, L. F., Stolen, R. H., Islam, M. N. (1980). Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers. Physical Review Letters, Vol. 45, Issue 13, 1095–1098. doi: 10.1103/physrevlett.45.1095




DOI: http://dx.doi.org/10.21303/2461-4262.2016.00021

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Waleed Ahmed Mahmoud Alrefai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)