IMPROVEMENT OF PERFORMANCE CHARACTERISTICS OF ETHANOL MOTOR FUELS THROUGH USE OF ADDITIVES BASED ON NANOSCALE CARBON CLUSTERS
Abstract
A new way to overcome the disadvantages of ethanol motor fuels by introducing of multifunctional additives based on carbon nanoscale clusters in their composition is given. It is shown that the modified nanoclusters contribute to the formation of supramolecular structure of ethanol fuels in the form of solvent domains around the nanoparticles. Orientation local ordering of these supramolecular structures changes such physicochemical properties of oxygenate fuels as dielectric constant and the load-bearing capacity of the liquid phase in the dynamic mechanical load.
The influence of synthetic carbon spheroidal clusters on the corrosive properties of ethanol fuels is studied. It is shown that by using small amounts (0.01 % wt.) of nanocluster-based additives in the composition of mixed fuel E–85 it is unnecessary to introduce the anticorrosion additives.
The effect of nanocarbon clusters on the tribological properties of ethanol motor fuels is studied. A decrease in damage of the metal surface for friction pairs of the fuel pumps is observed with the introduction of carboxylic nanoclusters into the ethanol fuel. This indicates the occurrence of friction processes in the hydrodynamic regime due to the increased bearing capacity of the fuel.
It is shown that the introduction of additives based on carbon nanoscale clusters into the ethanol fuel allows to create a high-performance motor fuel with improved performance.Keywords
Full Text:
PDFReferences
Danilov, A. M. (2010). Primenenie prisadok v toplivah. Sankt-Peterburg: KHIMIZDAT, 365.
EN590:2004 (2009). Automotive fuels. Diesel. Requirements and test methods. European committee for standartization, 12.
Vnukova, N. V., Barun, M. V. (2011). Al’ternatyvne palyvo yak osnova resursozberezhennya i ekobezpeky avtotransportu. Al’ternativnie istochniki energii, 9 (91), 45–55.
Saydahmetov, S. I., Karpov, S. A. (2007). Issledovanie smesevyh kompoziciy oksigenatov s etilovim spirtom v kachestve komponenta avtomobilnih topliv. Neftepererabotka i neftehimiya, 10, 29–32.
Boichenko, S. V., Boichenko, M. S., Lichmanenko, O. G., Kaban S. M. (2015). Vplyv dobavok alifatychnyh spyrtiv na vlastyvosti benzyniv: analitychnyy oglyad. Naukoyemni tehnologii, 1 (25), 86–92.
Kovtun, G. A. (2005). Al’ternatyvni motorni palyva. Visnik Nacional'noy akademii nauk Ukraini, 2, 19–27.
Kuz’mina, G. N., Naumov, A. G., Parenago, O. P. (2015). Smazochnie svoystva maslyanih SOTS, soderzhashchih v svoem sostave tribologicheski aktivnie prisadki. Trenie i iznos, 36 (4), 409–414.
Mang, T., Bobzin, K., Bartels, T. (2010). Industrial Tribology. Wiley, 644. doi: 10.1002/9783527632572
Notarianni, M., Liu, J., Vernon, K., Motta, N. (2016). Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein Journal of Nanotechnology, 7, 149–196. doi: 10.3762/bjnano.7.17
Liu, W.-W., Chai, S.-P., Mohamed, A. R., Hashim, U. (2014). Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry, 20 (4), 1171–1185. doi: 10.1016/j.jiec.2013.08.028
Deshmukh, A. A., Mhlanga, S. D., Coville, N. J. (2010). Carbon spheres. Materials Science and Engineering: R: Reports, 70 (1-2), 1–28. doi: 10.1016/j.mser.2010.06.017
Mishchenko, S. V., Tkachev, A. G. (2008). Uglerodnye nanomaterialy. Proizvodsdtvo, svoystva, primenenie. Moscow: Mashinostroyenie, 320.
Otsubo, Y., Fujiwara, M., Kouno, M., Edamura, K. (2007). Shear-thickening flow of suspensions of carbon nanofibers in aqueous PVA solutions. Rheologica Acta, 46 (7), 905–912. doi: 10.1007/s00397-007-0173-z
Bartelmess, J., Giordani, S. (2014). Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein Journal of Nanotechnology, 5, 1980–1998. doi:10.3762/bjnano.5.207
Echegoyen, L., Ortiz, A., Chaur, M. N., Palkar, A. J. (2010). Carbon Nano Onions. Akasaka/Chemistry of Nanocarbons, 463–483. doi: 10.1002/9780470660188.ch19
Zhang, C., Li, J., Liu, E., He, C., Shi, C., Du, X., Zhao, N. (2012). Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon, 50 (10), 3513–3521. doi:10.1016/j.carbon.2012.03.019
Kuznetsov, V., Moseenkov, S., Ischenko, A., Romanenko, A., Buryakov, T., Anikeeva, O., Lambin, P. (2008). Controllable electromagnetic response of onion-like carbon based materials. Physica Status Solidi (b), 245 (10), 2051–2054. doi: 10.1002/pssb.200879603
McDonough, J. K., Gogotsi, Y. (2013). Carbon Onions: Synthesis and Electrochemical Applications. Interface Magazine, 22 (3), 61–66. doi: 10.1149/2.f05133if
Wepasnick, K. A., Smith, B. A., Bitter, J. L., Howard Fairbrother, D. (2010). Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry, 396 (3), 1003–1014. doi:10.1007/s00216-009-3332-5
Beliy, N. M., Boguslavsky, L. Z., Zelinskaya, G. M. (2013). Strukturno-energeticheskie aspekti sinteza yglerodnih nanomaterialov visokovoltnimi elektrorazryadnimi metodami. Khimicheskaya tehnologiya neorganicheskih i organicheskih veshchestv, teoreticheskie osnovi, 56 (7), 98–104.
Zhou, J., Shen, Z., Hou, S., Zhao, X., Xue, Z., Shi, Z., Gu, Z. (2007). Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy. Applied Surface Science, 253 (6), 3237–3241. doi: 10.1016/j.apsusc.2006.07.012
Vlasov, A. I. (2011) Elektronnaya mikroskopiya. Moscow: MGTU im. N. E. Baumana, 168
Kulikov, K. G., Koshlan, T. V. (2015). Opredelenie razmerov kolloidnyh chastic pri pomoshchi metoda dinamicheskogo rasseyaniya sveta. Zhurnal tehnicheskoy fiziki, 85 (12), 26–32.
Vogel, R., Willmott, G., Kozak, D., Roberts, G. S., Anderson, W., Groenewegen, L., Trau, M. (2011). Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Anal. Chem., 83 (9), 3499–3506. doi: 10.1021/ac200195n
ASTM D2783-03 (2014). Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method).
GOST 6321-92. Engine fuels. Method for copper strip test.
Bazeev, E. T., Varlamov, G. B., Vol’chin, I. A. (2006). Energetika: istoriya, nastoyashchee i budushchee, Poznanie i opyt – put’ k sovremennoy energetike. Kyiv: ADEF-Ukraina, 350.
Haidai, O. O., Pilyavskiy, V. S., Polunkin, E. V. (2016). Polipshennya ekspluataciynih vlastyvostey etanol’nih motornih palyv mikrodozami karbonovyh sferoidal’nih klasterov. Naukoyemni tehnologii (Science-based technologies), 1, 3–8.
CWA 15293 (2005). Automotive fuels. Ethanol E85. Requirements and test methods.
Frolov, K. V. (2008). Sovremennaya tribologiya: itogi i perspektivi. Moscow: Izdatel’stvo LKI, 480.
Piljavsky, V. S., Kovtun, G. A., Polunkin, E. V. (2009). The tribological properties of modified fullerenes in different disperses mediums. XI International Conference “Hydrogen Materials Science and Chemistry of Carbon Nanomaterials” (ICHMS'2009), 478.
Pilyavskiy, V. S., Polunkin, E. V., Kameneva, T. M. (2010). Dinamicheskaya nesushchaya sposobnost’ zhidkih spirtov, Kataliz i neftehimiya, 18, 45–49.
Pavlinov, L. I., Rabinovich, I. B., Pogorelko, V. Z. (1968). Skorost’ zvuka I szhimaemost’ sopolimerov metilmetakrilata s metakrilovoy kislotoy. Visokomolekulyarnie soedineniya, 6, 1270–1276.
Ryabov, A. V., Emel’yanov, D. N., Semchikov, Yu. D. (1967). Trudi po khimii i khim. tehnologii, 1 (17), 139–143.
Haidai, O. O., Khimach, N. Yu., Pylyavskyy, V. S. (2016). Novi pidhodi do stvorennya alternatyvnih motornih palyv z ponovlyuvanoi syrovyny. ScienceRise, 6 (2 (23)), 13–21. doi: 10.15587/2313-8416.2016.71955
DOI: http://dx.doi.org/10.21303/2461-4262.2016.00213
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Olga Haidai, Vladimir Pilyavskiy, Yevgenij Shelud’ko, Yevgenij Polunkin

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)


