ROLE OF BIOLOGICAL PROCESSES DURING MANGANESE REMOVAL FROM UNDERGROUND WATER

Oleksandr Kravchenko

Abstract


This article briefly presents the results of the effect of oxidants during filtration of groundwater with high level of manganese compounds. Significant role of biological processes along with physico-chemical at demanganation of groundwater has been noticed. It has been studied that biological processes are dominated in low concentrations of oxidants. At high concentration of disinfectant the role of physico-chemical processes begin to dominate. Thus, there is a significant role of microorganisms in physico-chemical process of manganese removal. Obtained results showed that the oxygen is more efficient oxidizer than sodium hypochlorite for compounds of manganese presented in groundwater.


Keywords


manganese removal; zeolite filter loading; physico-chemical processes; biological oxidizing

Full Text:

PDF FIGURES TABLES

References


Zapolskii, A. K. (2005). Water, Sanitation and Water Quality. Kyiv: High school.

Guidelines for Drinking-Water Quality. (2011). Geneva: World Health Organization.

Charnii, D. V. (2015). Experience of multicomponent biological method of groundwater treatment. Irrigation and Water Management, 100, 102-112.

Khomutetska, T. P. (2010). Iron removal of groundwater by biological method on units with fibrous-foam filters. Problems of water supply, drainage and hydraulics, 14, 22-33.

Farkas, А., Dragan–Bularda, М., Muntean, V., Ciataras, D., & Tigan, S. (2013). Microbial activity in drinking water–associated Biofilms. Cent. Eur. J. Biol., 8(2), 201-214. doi: 10.2478/s11535-013-0126-0.

De Vet, W. W. J. M., Dinkla, I. J. T., Rietveld, L. C., & van Loosdrecht, M. C. M. (2011). Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions. Water Research, 45(17), 5389–5398. doi: 10.1016/j.watres.2011.07.028.

Dubinina, G. A., Sorokina, A. Y., Mysyakin, A. E., Grabovich, M. Y., Eprintsev, A. T., & Bukreeva, V. Y. (2012). Modelling and optimization of processes for removal of dissolved heavy-metal compounds from drinking water by microbiological methods. Water Resource, 39(4), 398–404. doi: 10.1134/s0097807812030037.

Chang Li Zhang, Jing Jing Wang, Qing Mei, & Hong Yang. (2013). The Removal of Manganese from Underground Water by the Immobilized Manganese-Oxidizing Bacteria. Advanced Materials Research, 668, 317–320. doi: 10.4028/www.scientific.net/AMR.668.317.

Feng Ping Hu, Wei He, & Chao Chun Tang (2012). Purification Efficiency Study of Biological Treatment of Iron and Manganese for Groundwater. Advanced Materials Research, 599, 383–386. doi: 10.4028/www.scientific.net/AMR.599.383.

Granger, H., Stoddart, A., & Gagnon, G. (2014). Direct Biofiltration for Manganese Removal from Surface Water. J. Environ. Eng., 140(4). doi: 10.1061/(ASCE)EE.1943-7870.0000819.

Dzyubo, V.V., & Alferova, L. I. (2011). Underground water ozonization while iron and manganese removal in Siberian region. Water: Chemistry and Ecology, 5, 25–32. Retrieved from http://watchemec.ru/en/article/23752/.

Kaleta, J., Puszkarewicz, A., & Papciak, D. (2007). Removal of Iron, Manganese and Nitrogen Compounds From Underground Waters With Diverse. Environment Protection Engineering, 33(3), 5–13. doi: https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPW8-0004-0011/tab/summary.

Barloková, D., & Ilavský, J. (2010). Removal of Iron and Manganese from Water Using Filtration by Natural Materials. Polish J. of Environ. Stud., 19(6), 1117–1122.

Gülay, A., Tatar, K., Musovic, S., Mateiu, R. V., Albrechtsen, H. I., & Smets, B. E. (2014). Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment. Appl Environ Microbiol., 80(22), 7010–7020. doi:10.1128/AEM.01959-14.

Nitzsche, K. S., Weigold, P., Lösekann-Behrens, T., Kappler, A., & Behrens, S. (2015). Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere, 138, 47-59. doi: 10.1016/j.chemosphere.2015.05.032.

Westholm, L. J., Repo, E., & Sillanpää, M. (2014). Filter materials for metal removal from mine drainage – a review. Environ Sci Pollut Res Int., 21(15), 9109–9128. doi: 10.1007/s11356-014-2903-y.

Inglezakis, V. J., Doula, M. K., Aggelatou, V., & Zorpas, A. A. (2010). Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment. Desalination and Water Treatment, 18(1-3), 341–346. doi: 10.5004/dwt.2010.1102.

Mamchenko, A. V, Savchenko, O. A., Chernova, N. N., & Yakupova, I. V. (2012). Purification of undergound waters of manganese compounds using a natural sorbent-catalyst. Journal of Water Chemistry and Technology, 34(4), 169–174. doi:10.3103/S1063455X12040017.

Michel, M. M. (2012). A study of application the modified chalcedonite for underground water treatment. Annals of Warsaw University of Life Sciences, 44(2), 91–100. doi: 10.2478/v10060-011-0065-x.

Cvetković, V. S., Milovan, M., & Purenović, J. N. J. (2010). Manganese removal from water by magnesium enriched kaolinite-bentonite ceramics. Desalination and Water Treatment, 24(1-3), 202–209. doi: 10.5004/dwt.2010.1505.

Ministry of Chemical Industry. (2006). Sodium hypochlorite. Specifications. Moskow: Standrtinform.

Ukrainian Ministry of Health. (2011). Hygienic requirements for drinking water intended for human consumption. Retrieved from http://zakon4.rada.gov.ua/laws/show/z0452-10/page.




DOI: http://dx.doi.org/10.21303/2461-4262.2016.00027

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Oleksandr Kravchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)