MATHEMATICAL MODELING OF HORIZONTAL DISPLACEMENT OF ABOVE-GROUND GAS PIPELINES
Abstract
The modern geodetic equipment allows observations as soon as possible, providing high accuracy and productivity. Achieving high accuracy of measurement is impossible without taking into account external factors that create influence on an observation object. Therefore, in order to evaluate an influence of thermal displacement on the results of geodetic monitoring a mathematical model of horizontal displacement of above-ground pipelines was theoretically grounded and built. In this paper we used data of experimental studies on the existing pipelines "Soyuz" and "Urengoy - Pomary - Uzhgorod". Above-ground pipeline was considered as a dynamic system "building - environment". Based on the characteristics of dynamic systems the correlation between the factors of thermal influence and horizontal displacement of the pipeline axis was defined.
Establishing patterns between input factors and output response of the object can be useful not only for geodetic control, but also for their consideration in the design of new objects. It was investigated that the greatest influence on the accuracy of geodetic observations can create dispersion of high-frequency oscillations caused by daily thermal displacement. The magnitude of displacement exceeds actual measurement error.
The article presents the results of calculation of high-frequency oscillations of above-ground gas pipeline.
The result made it possible to substantiate the accuracy and methodology of geodetic observations of the horizontal displacement of pipeline axes taking into account an influence of cyclical thermal displacement.
Research results were recommended for use in practice for enterprises that serve the main gas pipelines and successfully tested by specialists of PJSC "Ukrtransgaz" (Kharkiv, Ukraine) during the technical state control of aerial pipeline crossing in Ukraine and also can be used to form the relevant regulations.Keywords
Full Text:
PDFReferences
Makhutov, N. A., Gadenin, M. M., Chernyavskiy, A. O., Shatov, M. M. (2012). Analysis of the risk of failures in the functioning of potentially dangerous objects. Problems of risk analysis, 9 (3), 8–21.
SOU 49.5-30019801-115:2014 Pravyla tekhnichnoi ekspluatatsii mahistralnykh gazoprovodiv (2014). Kyiv: Ukrtransgaz, 67.
Huliaiev, Yu. (2007). Analiz podkhodov k obosnovaniyu tochnosti geodezicheskikh nabliudenii za deformatsionnyimi protsessami. Geodeziia i kartografiia, 8, 11–15.
Chybiriakov, V. K., Starovierov, V. S., Nikitenko, K. O. (2011). Zahalnyi pidkhid do modeliuvannia tochnosti geodezichnikh robit pry provedenni monitorinhu liniinykh sporud. Inzhenerna geodeziia, 57, 68–80.
VSN 39-1.10-003-2000 Polozhenie po tekhnicheskomu obsledovaniiu i kontroliu za sostoianiem nadzemnykh perekhodov mahistralnykh gazoprovodov (2000). Moscow: Gazprom, 50.
Trevoho, I. S., Ilkiv, Ye. Yu., Kukhtar, D. V. (2013). Tochnost geodezicheskikh rabot dlia opredeleniia vertikalnikh smeshchenii opor deformirovannykh uchastkov nadzemnykh truboprovodov. Geodeziia i kartografiia, 7, 5–7.
Subbotin, I. Ye. (1987). Inzhenerno-geodezicheskie raboty pri proektirovanii, stroitelstve i ekspluatatsii magistralnykh neftegazoprovodov. Moscow: Nedra, 140.
Oliinyk, A. P., Ivasiv, O. Ya. (2005). Matematychne modeliuvannia teplofizychnykh protsesiv v truboprovodakh z urakhuvanniam neodnoridnosti materialu pry konvektyvno-promenevomu teploobmini. Shtuchnyi intelekt, 3, 194–200.
Mandryk, O., Olijnyk, A., Moroz, A. (2016). Application Of Mathematical Methods For Condition Monitoring Of Oil And Gas Facilities. Journal of Applied Computer Science & Mathematics, 10 (1), 42–45. doi: 10.4316/jacsm.201601007
Trevoho, I. S., Ilkiv, Ye. Yu., Kukhtar, D. V. (2011). Metodyka kontroliu temperaturnykh deformatsii nadzemnykh perekhodiv mahistralnykh hazoprovodiv. Visnyk geodezii ta kartografii, 6, 6–9.
Herasymov, V., Lobazov, V., Reznik, B. (2010). Kontseptsyia geodezicheskoho monitorinha deformatsyonnykh protsessov v usloviiakh zapoliaria. Geoprofi, 1, 17–21.
Trevoho, I. S., Ilkiv, Ye. Yu., Kukhtar, D. V. (2013). Doslidzhennia temperaturnykh deformatsii nadzemnykh truboprovodiv metodom koreliatsiinoho analizu. Visnyk geodezii ta kartografii, 2, 12–15.
Huliaiev, Yu. (2008). Prohnozirovaniie deformatsyi sooruzhenii na osnove rezultatov geodezicheskikh nabliudenii. Novosibirsk: SHGA, 256.
Rekomendatsyi po prohnozyrovaniiu deformatsyi sooruzhenii hydrouzlov na osnove rezultatov geodezicheskikh nabliudenyi (1991). Leningrad: VNIIG, 57.
Fan, H. (2010). Theory of Errors and Least Squares Adjustment. Stockholm: Royal Institute of Technology, 226.
DOI: http://dx.doi.org/10.21303/2461-4262.2017.00274
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Denys Kukhtar

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)


