RESEARCH OF RISK ASSESSMENT PROBLEM OF CONVERGENCE TRAJECTORIES OF THE TWO DYNAMIC OBJECTS

Alexander Goloskokov, Mykhailo Brodskyi

Abstract


The statement of the risk assessment problem of convergence trajectories of dynamic objects is formulated. An example of the solution assessment problem of the convergence trajectories of two dynamic objects is considered. Modeling of aircraft traffic taking into account the influence of random perturbations in MatLab is carried out. Relative projections of the trajectories of two aircrafts are constructed. An assessment of the occurrence of a conflict situation between two dynamic objects is obtained, the results of this problem are analyzed.

The aim of research is developing an approach to risk assessment problem of convergence trajectories of dynamic objects.

The problem is solved in the test case with the given initial conditions.

Further development of the article consists in finding the probability of a conflict situation from the multidimensional Fokker-Planck-Kolmogorov equation.

The process of aircraft traffic is described by the random Markov process of Ornstein-Uhlenbeck.conflict situation; forecasting; aircraft; conflict situation assessment; conflict probability; dynamic object; stochastic differential equation

Keywords


conflict situation; forecasting; aircraft; conflict situation assessment; conflict probability; dynamic object; stochastic differential equation

Full Text:

PDF

References


Dowek, G., Munoz, C., Geser, A. (2001). Tactical Conflict Detection and Resolution in a 3-D Airspace. Europe Air Traffic Management R&D Seminar Santa Fe, 4 (2), 242–249.

Zolotuhin, V. V., Isaev, V. K., Davidson, B. H. (2009). Aktual'nye zadachi upravlenija vozdushnym dvizheniem. Trudy MFTI, 1 (3), 94–114.

Alonso-Ayuso, A., Escudero, L. F., Martín-Campo, F. J., Mladenović, N. (2014). A VNS metaheuristic for solving the aircraft conflict detection and resolution problem by performing turn changes. Journal of Global Optimization, 63 (3), 583–596. doi: 10.1007/s10898-014-0144-8

Durand, N., Alliot, J. (2009) Ant colony optimization for air traffic conflict resolution. Eighth USA/Europe air traffic management research and development seminar (ATM2009), 7.

Goloskokov, A. E., Brodskij, M. A. (2011). Modelirovanie sovmestnogo dvizhenija dinamicheskih obektov s uchetom vlijanija sluchajnyh vozmushhenij. Vestnik NTU «HPI», 9, 73–80.

Samyh Uzhasnyh Aviakatastrof V Istorii Chelovechestva. Available at: http://tvoipolet.ru/10-samyx-strashnyx-aviakatastrof/?history=0&sample=21&ref=1

Samyh uzhasnyh aviakatastrof v istorii chelovechestva. Available at: http://necro-tv.livejournal.com/6910.html???history=0&sample=21&ref=0

Stolknovenija i ugroza stolknovenij samoletov v 2000–2009 gg. Spravka. Available at: https://ria.ru/incidents/20090514/171046868.html???history=0&sample=29&ref=0

Aviakatastrofa v Tenerife – 1977. Available at: годhttp://aircraft.jofo.me/640136.html???history=0&sample=21&ref=2

V Velikobritanii stolknulis' dva samoleta. Available at: https://lenta.ru/news/2008/08/17/collision/???history=0&sample=35&ref=1

Dub, Dzh. L. (1956). Verojatnostnye processy. Ripol Klassik, 605.

Kuznecov, D. F. (2008). Stohasticheskie differencial'nye uravnenija: teorija i praktika. Differencial'nye uravnenija i processy upravlenija, 29.

Tihonov, V. I., Mironov, M. A. (1977). Markovskie processy. Moscow: Sovetskoe radio, 488.

Sveshnikov, A. A. (1968). Prikladnye metody teorii sluchajnyh funkcij. Moscow: Nauka, 449.




DOI: http://dx.doi.org/10.21303/2461-4262.2017.00308

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Alexander Goloskokov, Mykhailo Brodskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)