QUALITY MANAGEMENT OF DISPERSION-STRENGTHENED ALUMINUM-BASED SAP-ISML COMPOSITE ALLOY

Dmytro Makarenko

Abstract


The article is devoted to the analysis of the composition and properties of dispersion-strengthened aluminum-based SAP-ISML composite materials, which are used in various industries, including the aviation. The properties of such materials have been analyzed with the aim of ensuring the management of their quality for rational use and subsequent disposal. Mathematical models of dependence of parameters of dispersed-hardened materials on the basis of aluminum of SAP-ISML type on the aluminum content and temperature are constructed.

Keywords


composite material; dispersion-strengthened; aluminum; SAP-ISML; mathematical model; yield strength; ultimate strength; experimental design

Full Text:

PDF

References


Brautman, L. J., Krock, R. H. (1975). Composite Materials. New York: Academic Press.

Lahtin, Yu. M. (1990). Materialovedenie Uchebnik dlya vyisshih tehnicheskih uchebnyih zavedeniy. Moscow: Mashinostroenie, 528.

Mendoza-Ruiz, D. C., Esneider-Alcala, M. A., Estrada-Guel, I., Miki-Yoshida, M., Lopez-Gomez, M., Martinez-Sanchez, R. (2008). Dispersion of graphite nanoparticles in a6063 aluminum alloy by mechanical milling and hot extrusion. Reviews on advanced materials science, 18, 280–283.

Arzamasov, B. N. (1990). Konstruktsionnye materialy. Moscow: Mashinostroenie, 687.

Kovaleva, A. V., Chernyiy, A. A. (2008). Kompozitsionnyie materialyi v tehnike i issledovanie vozmozhnostey polucheniya izdeliy iz raznorodnyih materialov v liteynom proizvodstve. Penza: Penzenskiy gosudarstvennyiy universitet, 161.

Andreeva, A. V. (2001). Osnovyi fizikohimii i tehnologii kompozitov. Moscow: Radiotehnika, 191.

Balog, M., Krizik, P., Nosko, M., Hajovska, Z., Victoria Castro Riglos, M., Rajner, W. et. al. (2014). Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3 skeleton. Materials Science and Engineering: A, 613, 82–90. doi: 10.1016/j.msea.2014.06.070

Habibnejad-Korayem, M., Mahmudi, R., Poole, W. J. (2013). Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles. Materials Science and Engineering: A, 567, 89–94. doi: 10.1016/j.msea.2012.12.083

Ustinov, A., Falchenko, Y., Melnichenko, T., Shishkin, A., Kharchenko, G., Petrushinets, L. (2013). Diffusion welding of aluminium alloy strengthened by Al2O3 particles through an Al/Cu multilayer foil. Journal of Materials Processing Technology, 213 (4), 543–552. doi: 10.1016/j.jmatprotec.2012.11.012

Sun, W., Li, X., Hokamoto, K. (2013). Preparation of nano-Al2O3 dispersion strengthened coating via coating-substrate co-sintering and underwater shock wave compaction. Ceramics International, 39 (4), 3939–3945. doi: 10.1016/j.ceramint.2012.10.241

Makarenko, D. N. (2014). Quality management of sintered aluminum powder (SAP) composite alloy. Technology Audit and Production Reserves, 6 (1(20)), 64–68. doi: 10.15587/2312-8372.2014.34692

Demin, D. A. (2011). Methodology of forming functional in the optimal control electric smelting. Technology Audit and Production Reserves, 1 (1 (1)), 15–24.

Mohanad, M. K., Kostyk, V., Demin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2 (5(80)), 45–49. doi: 10.15587/1729-4061.2016.65454




DOI: http://dx.doi.org/10.21303/2461-4262.2017.00352

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Dmytro Makarenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)