MODELING OF THERMAL MODES OF THE REFLUX CONDENSER OF THE ABSORPTION REFRIGERATION UNIT

Andrey Kholodkov, Aleksandr Titlov

Abstract


Currently, developers of modern refrigeration equipment, in accordance with the plans of the UN, are moving to natural refrigerants (hydrocarbons, carbon dioxide and ammonia) that do not have an adverse technological impact on the ecosystem of the planet. In domestic refrigeration technology, one of the options is absorption refrigeration units, the working body of which is an aqueous ammonia mixture with the hydrogen addition. Having a number of unique advantages over compression analogs, absorption systems are characterized by lower energy characteristics.

As the analysis shows, the maximum thermodynamic losses in the absorption aggregates are concentrated in the generating unit when the ammonia is evaporated, it is purified from water vapor and transported to the evaporator. In this connection, the mathematical modeling of the thermal regimes of the reflux condenser is performed, which is responsible for purification and transportation of ammonia vapor.

Modeling is carried out on standard designs of absorption refrigeration units taking into account reasonable assumptions and results of own experimental researches. A cellular model is used. Stationary operating modes are modeled due to the high thermal inertia of the processes in the reflux condenser.

As a result, the perspective of the thermal insulation installation throughout the reflux section is shown, which makes it possible to increase the energy efficiency by 17 ... 22 %

Keywords


thermal modes; energy efficiency; absorption refrigerator; reflux condenser; thermal insulation

Full Text:

PDF

References


Tassou, S. A., De-Lille, G., Ge, Y. T. (2009). Food transport refrigeration – Approaches to reduce energy consumption and environmental impacts of road transport. Applied Thermal Engineering, 29 (8-9), 1467–1477. doi: 10.1016/j.applthermaleng.2008.06.027

Rodríguez-Muñoz, J. L., Belman-Flores, J. M. (2014). Review of diffusion–absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 30, 145–153. doi: 10.1016/j.rser.2013.09.019

Ngouateu Wouagfack, P. A., Tchinda, R. (2014). Optimal performance of an absorption refrigerator based on maximum ECOP. International Journal of Refrigeration, 40, 404–415. doi: 10.1016/j.ijrefrig.2013.11.025

Yildiz, A. (2016). Thermoeconomic analysis of diffusion absorption refrigeration systems. Applied Thermal Engineering, 99, 23–31. doi: 10.1016/j.applthermaleng.2016.01.041

Ersöz, M. A. (2015). Investigation the effects of different heat inputs supplied to the generator on the energy performance in diffusion absorption refrigeration systems. International Journal of Refrigeration, 54, 10–21. doi: 10.1016/j.ijrefrig.2015.02.013

Dincer, I., Ratlamwala, T. A. H. (2016). Developments in Absorption Refrigeration Systems. Green Energy and Technology, 241–257. doi: 10.1007/978-3-319-33658-9_8

Acuña, A., Velázquez, N., Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51 (1-2), 1273–1281. doi: 10.1016/j.applthermaleng.2012.10.046

Yildiz, A., Ersöz, M. A., Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. doi: 10.1016/j.ijrefrig.2014.04.021

Zhang, N., Lior, N. (2007). Development of a Novel Combined Absorption Cycle for Power Generation and Refrigeration. Journal of Energy Resources Technology, 129 (3), 254. doi: 10.1115/1.2751506

Zohar, A., Jelinek, M., Levy, A., Borde, I. (2007). The influence of diffusion absorption refrigeration cycle configuration on the performance. Applied Thermal Engineering, 27 (13), 2213–2219. doi: 10.1016/j.applthermaleng.2005.07.025

Mazouz, S., Mansouri, R., Bellagi, A. (2014). Experimental and thermodynamic investigation of an ammonia/water diffusion absorption machine. International Journal of Refrigeration, 45, 83–91. doi: 10.1016/j.ijrefrig.2014.06.002

Dincer, I., Ratlamwala, T. A. H. (2016). Developments in Absorption Refrigeration Systems. Green Energy and Technology, 241–257. doi: 10.1007/978-3-319-33658-9_8

Titlov, A. S. (2007). Sovremennyiy uroven razrabotok i proizvodstva byitovyih absorbtsionnyih holodilnyih priborov. Holodilnyiy Biznes, 8, 12–17.

Kirillov, V. Kh., Zub, V. V., Titlov, A. S., Shirshkov, A. K. (2016). Komp'yuternoye modelirovaniye fizicheskikh i tekhnologicheskikh protsessov. Teoriya, algoritmy, programmy. Odessa: BMB, 565.

Selivanov, A. P. (2013). Absorbtsionnyie holodilnyie apparatyi sezonnogo tipa. Sovremennoe sostoyanie i tendentsii razvitiya. Zbirnik Naukovih Prats NUK, (5-6), 82–88.

Titlova, O. A. (2011). Avtomatizirovannoe rabochee mesto issledovatelya teplovyih protsessov v absorbtsionnyih holodilnyih priborah. Avtomatizatsiya Tehnologicheskih I Biznes-protsessov, 5-6, 60–64.




DOI: http://dx.doi.org/10.21303/2461-4262.2017.00358

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Andrey Kholodkov, Aleksandr Titlov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)