DEVELOPMENT OF INFORMATION SUPPORT OF QUALITY MANAGEMENT OF UNDERGROUND PIPELINES
Abstract
Recommendations are worked out in relation to the evaluation of longevity and quality of underground metallic pipelines in the conditions of corrosion fatigue. The features of early exposure of crisis (before accident) situations are set. A complex qualimetric criterion is offered for determination of level of quality of pipeline by the account of his technological specific. The elements of investment project and methodology of estimation of resource are worked out. and also influences of factors of different nature on risks and possibility of accident of gas pipelines.
The model of corrosion fatigue of metal is based on power criterion of destruction mechanics according to which there is an act of destruction in an arbitrary elemental volume of a material if the total irreversibly scattered energy of plastic deformation for all load cycles will reach a critical value equal to the energy of destruction.
In order to control the corrosion process taking the polarization potential into account, a criterion relation is used to determine the rate of residual corrosion of a metal in the defect of the insulation coating, in particular, at the top of the crack, which is an anode region.
The adhesive strength criteria of biocorrosive aggressive soil, mechanical criteria for the stress intensity factor, the criterion of corrosion resistance defect, criterion correlation for estimating the speed of residual corrosion in defect of insulation coating with imposed diagnostic weight characteristics and diagnostic value of tests, that complement, clarify and improve the corrosion monitoring system of pipelines, helpful for controlling and optimizing of the corrosion process, and Development of recommendations for anti-corrosion protection of metal are used in areas with non-stationary plastic deformation.
Keywords
Full Text:
PDFReferences
DSTU-N B V.2.3-21:2008. Mahistral'ni truboprovody. Nastanova. Vyznachennya zalyshkovoyi mitsnosti mahistral'nykh truboprovodiv z defektamy (2008). Kyiv: Minrehionbud Ukrayiny.
DSTU 4219-2003. Truboprovody stalevi mahistral'ni. Zahal'ni vymohy do zakhystu vid koroziyi (2003). Kyiv: Minrehionbud Ukrayiny, 72.
DSTU B V.2.5-30:2006. Truboprovody stalevi pidzemni system kholodnoho i haryachoho vodopostachannya. Zahal'ni vymohy do zakhystu vid koroziyi (2006). Kyiv: Minbud Ukrayiny, 112.
Petryna, Yu. D., Petryna, D. Yu., Kozak, O. L. (2012). Vplyv ekspluatatsiynykh chynnykiv na koroziyno-vtomne ruynuvannya staley mahistral'nykh naftohazoprovodiv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 3 (44), 1–11. Available at: http://nbuv.gov.ua/UJRN/rrngr_2012_3_14
Kiporenko, A. S. (2011). Sovershenstvovanie normativnogo obespecheniya ekspluatacionnoy bezopasnosti truboprovodnyh sistem atomnih elektrostanciy. Kharkiv: Ukrainskaya inzhenerno-pedagogicheskaya akademiya, 139.
Anuchkin, M. P., Gorickiyb, V. N., Miroshnichenko, B. I. (1986). Truby dlya magistral'nyh truboprovodov. Moscow: Nedra, 232.
Pohmurs'kiy, V. І,. Homa, M. S. (2008). Korozіyna vtoma metalіv ta splavіv. Lvіv: Spolom, 152.
Sangid, M. D. (2013). The physics of fatigue crack initiation. International Journal of Fatigue, 57, 58–72. doi: 10.1016/j.ijfatigue.2012.10.009
Ray, A. (1999). Stochastic Modeling of Fatigue Crack Damage for Risk Analysis and Remaining Life Prediction. Journal of Dynamic Systems, Measurement, and Control, 121 (3), 386–393. doi: 10.1115/1.2802486
Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A. (2006). A generalized Paris’ law for fatigue crack growth. Journal of the Mechanics and Physics of Solids, 54 (7), 1333–1349. doi: 10.1016/j.jmps.2006.01.007
Dmytrakh, I. M., Panasyuk, V. V. (1999). Vplyv koroziynykh seredovyshch na lokal'ne ruynuvannya metaliv bilya kontsentratoriv napruzhen. Lviv: Redaktsiya zhurnalu “Fizyko-khimichna mekhanika materialiv”, 340.
Ratych, L. V. (1999). Anodic dissolution and hydrogen embrittlement contribution into corrosion-fatigue crack growth. Materials Science, 35 (3), 15–27.
Ostash, O. P.; Panasuyk, V. V. (Ed.) (2015). Fracture mechanics and strength of materials. Vol. 15. Structure of materials and fatique life time of structural components. Lviv: Publishing House “SPOLOM”, 312.
Li, D. M., Nam, W. J., Lee, C. S. (1998). An Improvement on Prediction of Fatigue Crack Growth from Low Cycle Fatigue Properties. Engineering Fracture Mechanics, 60 (4), 397–406. doi: 10.1016/s0013-7944(98)00029-0
Kaeshe, H. (1979). Die Korrosion der Metalle. Physikalisch-chemische Prinzipien und aktuelle Probleme. Berlin: Springer-Verlag, 400. doi: 10.1007/978-3-662-11502-2
Morrow, J. (1950). Investigation of plastic strain energy as a criterion for finite fatigue life. The garret corporation report. Phaeniz, 105–108.
Andreikiv, O. E., Lishchyns’ka, M. V. (1999). Equations of growth of fatigue cracks in inhomogeneous plates. Materials Science, 35 (3), 355–362. doi: 10.1007/bf02355479
Li, Y. C., Huang, N. C. (1991). Fatigue crack speed of materials with linear hardening. International Journal of Solids and Structures, 27 (7), 865–883. doi: 10.1016/0020-7683(91)90021-7
McMeeking, R. M. (1977). Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. Journal of the Mechanics and Physics of Solids, 25 (5), 357–381. doi: 10.1016/0022-5096(77)90003-5
Panasyuk, V. V., Andreykiv, A. E., Parton, V. Z. (1988). Osnovy mekhaniki razrusheniya. Kyiv: Naukova dumka, 488.
Valyashek, V. B., Kaplun, A. V., Yuzevych, V. M. (2015). Matematychne ta komp"yuterne modelyuvannya fizychnykh kharakterystyk materialu u vershyni trishchyny z urakhuvannyam efektu zmitsnennya. Kompyuterno-intehrovani tekhnolohiyi: osvita, nauka, vyrobnytstvo, 18, 97–104. Available at: http://nbuv.gov.ua/UJRN/Kitonv_2015_18_18
Chen, X., Mai, Y.-W. (2012). Fracture mechanics of electromagnetic mate-rials: nonlinear field theory and applications. New Jersey: Imperial College Press, 328. Available at: http://www.beck-shop.de/fachbuch/leseprobe/9781848166639_Excerpt_001.pdf doi: 10.1142/p760
Rice, J. R. (1968). A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 35 (2), 379–386. doi: 10.1115/1.3601206
Manson, S. S., Halford, G. R. (1981). Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. International Journal of Fracture, 17 (2), 169–192. doi: 10.1007/bf00053519
Manson, S. S., Halford, G. R. (1986). Re-examination of cumulative fatigue damage analysis–an engineering perspective. Engineering Fracture Mechanics, 25 (5-6), 539–571. doi: 10.1016/0013-7944(86)90022-6
Ellyin, F., Kujawski, D. (1986). An energy-based fatigue failure criterion. Microstructure and Mechanical Behaviour of Materials, 11, 591−601.
Bol'shuhin, M. A., Zverev, D. L., Kaydalov, V. B., Korotkih, Yu. G. (2010). Ocenka dolgovechnosti konstrukcionnyh materialov pri sovmestnyh processah malociklovoy i mnogociklovoy ustalosti. Problemy prochnosti i plastichnosti, 72, 28–35.
Desmorat, R. (2006). Damage and fatigue. Continuum damage mechanics modeling for fatigue of materials and structures. REGC. Geomechanics in energy production. Cachan, 10, 849–877. Available at: w3.lmt.ens-cachan.fr/PDFs/DESMORAT.2006.7.pdf
Pichuhin, S. F., Zyma, O. Ye., Vynnykov, P. Yu. (2015). Nadiynist' liniynoyi chastyny pidzemnykh mahistral'nykh truboprovodiv. Zbirnyk naukovykh prats'. Seriya: haluzeve mashynobuduvannya, budivnytstvo. Poltava: PoltNTU, 1 (43), 17–28.
Banabic, D. (2010). Plastic Behaviour of Sheet Metal. Sheet Metal Forming Processes. Berlin: Springer, 27–140. doi: 10.1007/978-3-540-88113-1_2
Pakhalovych, M. (2017). Improving normative documents on the safe operation of the elements of pipeline systems of nuclear power plants beyond design term. Kharkiv, 24.
Polyakov, S. H., Klymenko, A. V., Kovalenko, S. Yu. (2010). Systema koroziynoho monitorynhu truboprovodiv. Nauka ta innovatsiyi, 6 (5), 25–28.
Dzhala, R. M., Verbenets, B. Y., Melnyk, M. I. (2016). Measuring of Electric Potentials for the Diagnostics of Corrosion Protection of the Metal Structures. Materials Science, 52 (1), 140–145. doi: 10.1007/s11003-016-9936-y
Akbashev, R. M., Zhulyaev, S. I., Kurdyumov, N. I. (2016). Prognozirovanie ostatochnogo sroka bezavariynoy sluzhby polyh metallicheskih obektov pod vliyaniem obshchey korrozii ih naruzhnoy poverhnosti pri provedenii ekspertizy promyshlennoy bezopasnosti. Nauka, tekhnika i obrazovanie, 3 (21), 124–126.
Panchenko, S., Lavrukhin, О., Shapatina, O. (2017). Creating a qualimetric criterion for the generalized level of vehicle. Eastern-European Journal of Enterprise Technologies, 1 (3 (85)), 39–45. doi: 10.15587/1729-4061.2017.92203
Gorbunov, D. V. (2014). Riski innovatsionnyih proektov i metodyi ih otsenki. Vektor nauki TGU, 3 (29), 123–126.
Florescu, M. S. (2012). Analysis of economic risk in european investment projects. Revista Romana de Economie, 34 (1), 47–67. Available at: http://revecon.ro/articles/2012-1/2012-1-3.pdf
Yuzevych, V. M., Klyuvak, O. V. (2015). Ekonomichnyy analiz rivniv efektyvnosti ta yakosti internet-platizhnykh system pidpryyemstva. Biznes Inform, 1, 160–164.
Chaban, O. P., Yuzevych, L. M. (2015). Modelyuvannya ta yakist' monitorynhu diahnostychnykh system. Vymiryuval'na tekhnika ta metrolohiya, 76, 92–98.
Chaban, O. P., Yuzevych, V. M. (2015). Matematychne modelyuvannya diahnostychnykh oznak dlya zabezpechennya systemy funktsionuvannya medychnykh posluh. Systemy obrobky informatsiyi, 2 (127), 108–113.
Ofitsiynyi sayt PAT “UKRTRANS HAZ”. Available at: http://utg.ua/utg/about-company/affiliates/
DOI: http://dx.doi.org/10.21303/2461-4262.2017.00392
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Larysa Yuzevych, Ruslan Skrynkovskyy, Bohdan Koman

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)


