USING OF THE WAVE TECHNOLOGIES IN INTENSIFICATION PROCESSES OF HEAT AND MASS TRANSFER

Oleg Burdo, Valentyna Bandura, Aleksandr Zykov, Igor Zozulyak, Julia Levtrinskaya, Elena Marenchenko

Abstract


The advantages of wave technologies in comparison with traditional thermal technologies are considered. The aim of research is using of innovative wave technologies to intensify the processes of heat and mass transfer in the processes of dehydration and extraction, while reducing energy costs. A classification of the mechanisms of intensification of heat and mass transfer processes is proposed. Technical methods for intensifying heat and mass transfer during the processing of plant raw materials using technologies for targeted delivery of energy are developed. Samples of equipment are presented that implement technologies of directed energy action and innovative products obtained at these facilities. The results of experimental studies of drying in the microwave and infrared fields are shown.


Keywords


wave technologies; targeted energy delivery; microwave technologies; mass transfer intensification; extraction; dehydration; innovative food concentrates

Full Text:

PDF

References


Weibbach, D., Ruprecht, G., Huke, A., Czerski, K., Gottlieb, S., Hussein, A. (2013). Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, 52, 210–221. doi: 10.1016/j.energy.2013.01.029

Gromadzki, G., Konol, W. (2008). Energy game: Ukraine, Moldova and Belarus between the EU and Russia. Energy Security in Central and Eastern Europe. Prague, 19.

Aloqbi, A., Omar, U., Yousr, M., Grace, M., Lila, M. A., Howell, N. (2016). Antioxidant Activity of Pomegranate Juice and Punicalagin. Natural Science, 8 (6), 235–246. doi: 10.4236/ns.2016.86028

Sorour, M. A. (2015). Optimization of Multiple Effect Evaporators Designed for Fruit Juice Concentrate. American Journal of Energy Engineering, 3 (2), 6. doi: 10.11648/j.ajee.s.2015030201.12

Azoev, G. L., Degterev, D. A., Degtereva, E. A., Zobov, A. M.; Azoeva, G. L. (2011). Ryinok nano: ot nanotehnologiy-k nanoproduktam. Moscow: BYNOM, 320.

Potapov, V. A., Yakushenko, E. N. (2013). Povyshenie energoeffektivnosti sushki vinogradnyih vyizhimok v massoobmennom module s konduktivnyim podvodom teplotyi. Naukovi pratsi Odeskoyi natsionalnoyi akademiyi harchovih tehnologiy, 43 (2), 179–184.

Bernic, M., Raducan, M., Ciobanu, E. (2013). Drying Kinetics of Sunflower Seeds using Pulsed UHF Energy Intake. TEM Journal, 2 (4), 305–308.

Burdo, O., Terziev, S., Levtrinskaya, Y. (2015). Energetika ekoindustrii pischevyih kontsentratov. Problemyi regionalnoy energetiki [Problemele energetici regionale], 3 (29), 112–118.

Burdo, O. G. (2013). Pischevyie nanoenergotehnologii. Kherson: GRIN D.S., 294.

Burdo, O. G., Terziev, S. G., Bandura, V. N. (2015). Printsipy napravlennogo energeticheskogo deystviya v pischevyih nanotehnologiyah. Problemyi regionalnoy energetiki, 1 (27), 79–85.

Burdo, О. G., Zykov, A. V., Terziev, S. G., Ruzhitskaya, N. V. (2016). The Nanotechnological Innovation in Food Industry. International Journal of Engineering Research and Applications, 6 (3), 144–150.




DOI: http://dx.doi.org/10.21303/2461-4262.2017.00399

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Oleg Burdo, Valentyna Bandura, Aleksandr Zykov, Igor Zozulyak, Julia Levtrinskaya, Elena Marenchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)