Oleksandr Fyk, Dmutro Kucher, Roman Gonchar


The paper presents the results of experimental studies of a superconducting protective antenna, which consists of a high-temperature film deposited by a magnetron or a laser beam on a substrate. The work is carried out:

- analysis of the selection criteria for the substrate type (Al2O3, Y2O3, SrTiO3, MgO) and the method for depositing a high-temperature superconducting film (HTSF) on its surface – YBaCuO

- analysis of the methods of making contacts, which allow to reduce losses when passing a signal from the superconducting microstrip antenna to the waveguide path.

The aim of this article is determination of the parameters of a prototype sample of a microstrip antenna device made from HTSF: transient characteristics of high-temperature superconductors, HTSF impulsive characteristics, recovery time of the superconducting state after the action of a powerful pulse on the protective device, the amplitude-frequency characteristics of the protective device in the superconducting state. This will allow to evaluate the possibility of using a microstrip antenna device made from high-temperature superconductors to protect the receiving systems from electromagnetic damage. The absence of a unified theory of high-temperature superconductivity leads to the need to select an analytical form of the functions of the amplitude-frequency characteristics of superconducting protection, and for this mathematical models are used in the programs "APPROX", "MathCAD14.0". The reliability of the obtained results of mathematical modeling of the processes of protection and recovery of the superconducting state after electromagnetic shock are confirmed in the course of experimental studies (an error of 0.15%).


high-temperature superconducting film; microstrip antenna; protective device; magnetron sputtering systems; coefficient of thermal expansion

Full Text:



Fyk, A. I. (2015). Modelirovanie elektromagnitnogo polya v pryamougolnom volnovode s sverkhprovodyashhim sterzhnem. Mezhdunarodnyi Nauchnyi Institut "Educatio". Ezhemesyachnyi nauchnyi zhurnal, 6 (13 (2)), 17–21.

Berezinec, V. M., Kucher, D. B., Fyk, A. I. (1997). Skorost fazovogo S–N perexoda sverxprovodyashhego zashhitnogo ustroistva. Nauchno-texnicheskii sbornik KhVU, 1 (5), 77–81.

Berezinec, V. M., Kucher, D. B. (1993). Vliyanie sverkhpovodyashhego vysokotemperaturnogo plenochnogo elementa na prokhozhdenie signalov cherez fidernye linii svyazi. Informacionnye sistemy. Kharkiv: ANU, 29–32.

Konkov, K. E., Molchanov, A. S. (1992). Poluchenie plenok Y–Ba–Cu–O metodom lazernogo napyleniya. Sverkhprovodimost: fizika, khimiya, tekhnika, 5 (4), 46–48.

Vendik, O. G. (Ed.) (1991). High–Tc Superconductors: Physical Principis of Microwave Applications. Leningrad, l48.

Berezinec, V. M., Kucher, D. B., Fyk, A. I. (1999). Eksperimentalnoe issledovanie koaksialno-volnovodnogo perekhoda. Radioelektronika i informatika, 4, 21–24.

Sobol, E. N. et. al. (1990). Obzory po vysokotemperaturnoi sverkhprovodimosti. Moscow: MCNTI, 3, 94–131.

Grigorev, G. Yu. (1990). Tekhnologiya polucheniya i nekotorye svoistva VTSP–plenok. Obzory po VTSP. Moscow: MCNTI, 2, 25–69

Crabtree, G. W., Kwok, W. K., Welp, U., Burriel, R., Claus, H., Vandervoort, K. G., Liu, J. Z. (1988). The upper critical field of high temperature superconductors. Journal of Magnetism and Magnetic Materials, 76-77, 547–551. doi: 10.1016/0304-8853(88)90483-0

Bendre, D. (1990). High–temperature superconductors. Solid state communications, 73 (5), 345.

Simon, R. (1989). High–temperature superconductors for microelectronics. Solid State Technol, 3 (9), 141–146.

Talvacchio, J. (1989). Electrical contact to superconductors. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12 (1), 21–31. doi: 10.1109/33.19008

Ohya, S., Kobayashi, K., Hirabayshi, V. (1989). High–temperature superconductors. Japanese Journal of Applied Physics, 28 (6), 978–980.

Kolinsky, P. V., May, P., Harrison, M. R., Miller, P., Jedamzik, D. (1989). Substrate-temperature dependence of thin films of BiSrCaCuO deposited by the laser ablation method. Superconductor Science and Technology, 1 (6), 333–335. doi: 10.1088/0953-2048/1/6/013

Shirman, Ya. D. (1959). Radiovolnovody i obyomnye rezonatory. Moscow: Sovetskoe radio, 370.

Berezinec, V. M., Kucher, D. B. (1993). Rezultaty eksperimentalnogo issledovaniya amplitudno-chastotnykh kharakteristik i vremeni vosstanovleniya sverkhprovodyashhego sostoyaniya ogranichitelya na osnove VTSP. Tematicheskiy nauchno-tekhnicheskii sbornik KhVU, 339, 31–34.

DOI: http://dx.doi.org/10.21303/2461-4262.2017.00436


  • There are currently no refbacks.

Comments on this article

View all comments

Copyright (c) 2017 Oleksandr Fyk, Dmutro Kucher, Roman Gonchar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)