DEVELOPING OF THE RELATED DATA SEARCH LSA-BASED ALGORITHM AND ITS PROGRAMMED REALIZATION

Serhiy Mashkovskyi

Abstract


In this article let’s consider the theoretical basis of the data search in large data ordered arrays based on the context of the search request and tracking of semantic relationships. Also the first steps towards the practical implementation of this task are proposed. Simple program to check author’s thoughts has been developed. All the researches have been made with the VK social network. Internal API VK was used as retrieving data tool. The final results say that the VK’s content has many opportunities to make them more useful and searchable, which means that it is possible to use this ‘property’ to create our own, more user-friendly way to search and get important data, in the first, for example, buying-selling information, from many kinds of data sources (official pages, users’ profiles etc.). That feature never been presented (and probably won’t) in other social networks like Facebook or Instagram. The material in this article will be used later while the author’s PhD thesis writing.


Keywords


contextual search; social networking; text ontology; semantic search

Full Text:

PDF

References


Manning, C. D., Raghavan, P., Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. Available at: http://www.informationretrieval.org

Glybovets, A. M. (2016). Alhorytm poshuku zviazkiv i zalezhnostey mizh danymy veb-storinok. Problems of programming, 1, 44–51.

Li, Y., Bao, Z., Li, G., Tan, K.-L. (2015). Real time personalized search on social networks. 2015 IEEE 31st International Conference on Data Engineering, 639–651. doi: 10.1109/icde.2015.7113321

Adamic, L., Adar, E. (2005). How to search a social network. Social Networks, 27 (3), 187–203. doi: 10.1016/j.socnet.2005.01.007

Salamakha, O. (2015). Algoritm LSA dlya poiska pokhozhikh dokumentov. Available at: http://netpeak.net/ru/blog/algoritm-lsa-dlya-poiska-pohozhih-dokumentov/

Basipov, A. A., Demich, O. V. (2012). Semanticheskii poisk: problemy i tekhnologii. Vestnik AGTU. Seriya: upravleniye, vychislitelnaya tekhnika i informatika, 1, 104–111.

Panchenko, A. (2010). Postroyeniye semanticheskoy seti iz raznorodnyh dannyh. Moscow: MGTU im. Baumana. Available at: http://it-claim.ru/Persons/Panchenko/presentation2010_sept_final.pdf

Voronoy, S. M. (2012). Obnovleniye ontologiy s pomoschyu semanticheskih setey tekstov na yestestvennom yazike. Informatsionnie upravlyayuschiye sistemy i kompyuterniy monitoring. Donetsk: DonNTU, 83–85.

Glybovets, A. N., Glybovets, N. N., Prokoptsev, D. E., Sidorenko, M. O. (2013). Strukturirovannie dannie i semanticheskaya pautina: tekhnologii Wiki. Problems of programming, 1, 45–67.

Glybovets, A. M., Glybovets, M. M., Polyakov, M. V. (2014). Intelektualni merezhi. Dnipropetrovsk: Nova Ideolohiya, 464.

Naykhanova, L. V., Ayusheyeva, N. N., Khaptakhayeva, N. B. (2007). Postroyeniye semanticheskoy seti predmetnoy oblasti na osnove izvlecheniya znaniy iz nauchnogo teksta. Izvestiya vyschikh uchebnyh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki, 4, 51–61.

Burakov, S. V., Tarsov, S. V. (2015). Kontekstno zavisimiy sposob poiska nechetkih dublikatov v relyatsionnikh bazah dannyh. Informatsionniye upravlyayuschie sistemy, 2, 76–81.

Mazov, N. A. (1995). N-grammniye metodi obrabotki tekstovoy informatsii. Novosibirsk: OIGGM SO RAN, 180.

Purwitasari, D., Yuniar, E., Yuhana, U. L., Siahaan, D. O. (2011). Ontology-based annotation recommender for learning material using contextual analysis. Proceedings of the IETEC’11 Conference, Kuala Lumpur, Malaysia. Available at: http://ietec.apaqa.org/wp-content/uploads/IETEC-2011-Proceedings/papers/Conference%20Papers%20Refereed/Wendesday/WP4/WP4.4_59.pdf

WordNet Search – 3.1. Available at: http://wordnetweb.princeton.edu/perl/webwn

Leontyeva, N. N. (2002). K teorii avtomaticheskogo ponimaniya teksta. Chast 3. Semanticheskiy komponent. Lokalniy semanticheskiy analiz. Moscow: Izdatelstvo Moskovskogo universiteta, 49.

Foltz, P. W., Gilliam, S., Kendall, S. (2000). Supporting Content-Based Feedback in On-Line Writing Evaluation with LSA. Interactive Learning Environments, 8 (2), 111–127. doi: 10.1076/1049-4820(200008)8:2;1-b;ft111

Landauer, T. K., Laham, D., Rehder, B., Schreiner, M. E.; Shafto, M. G., Langley, P. (Eds.) (1997). How Well Can Passage Meaning be Derived without Using Word Order? A Comparison of Latent Semantic Analysis and Humans. Proceedings of the 19th Annual Meeting of the Cognitive Science Society, 412–417. Available at: http://lsa.colorado.edu/papers/cogsci97.pdf

Gryshanova, I. Yu. (2016). Analitychniy oglyad metodiv ta zasobiv semsntichnoho poshuku v semantic web. Problems of programming, 1, 51–72.

Uspenskii, I. V. Internet-marketing. Metody poiska informatsii. Biblioteka «Polka bukinista». Available at: http://polbu.ru/uspensky_inetmarketing/ch45_i.html

Shelmanov, A. O. (2015). Issledovanie metodov avtomaticheskogo analiza tekstov i razrabotka integrirovannoy sistemy semantiko-sintaksicheskogo analiza. Moscow, 210. Available at: http://www.ipiran.ru/announce/dissertation_Shelmanov.pdf




DOI: http://dx.doi.org/10.21303/2461-4262.2018.00468

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Serhiy Mashkovskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)