Yuliia Lymarenko, Dmitry Tatievskyi


In the course of studies on the problem of restoring hands relief, using the de Bruijn structured illumination, methods of solving this problem are proposed. This is a method of simple quantitative detection of Hough segments on the skin of the hand, a method of qualitative visual evaluation of the effectiveness of the color palette using the dominant color, and a method of the weight coefficients of the components of the color palette.

The proposed methods make it possible to quantitatively determine the optimal choice of the color scheme for generating the de Bruijn bands when illumination of the hand, to restore its relief.

The work describes the stages of this study, led from visual observation to a full quantitative calculation of the quality of calibration illuminations, with the possibility of their optimal choice.

In the course of experiments and observations, the requirements for the technical support of research were developed to achieve the best quality of the images of the hands. Also, the paper presents a high-speed de Bruijn sequence generating algorithm using Lyndon's words, which excludes the search for Euler chains or Hamiltonian cycles, for various kinds of de Bruijn graphs. With its help, the generation of structured light patterns with various color schemes was carried out, with the purpose of further analysis of their use in 3D reconstruction systems of hands.


3D scanner; image convolution; color scheme; Hough transformations; de Bruijn sequence; Lyndon words; ROI (Region of Interest)

Full Text:



Khachatryan, L. G. (1992). Methods of constructing de Bruijn sequences. Discrete Mathematics and Applications, 2 (6), 607–622. doi: 10.1515/dma.1992.2.6.607

De Bruijn, N. G. (1946). A Combinatorial Problem. Nederlands Archief voor Kerkgeschiedenis, 49, 758–764.

Lind, D., Marcus, B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 516. doi:10.1017/cbo9780511626302

Vershok, D. A. (2002). Algoritmicheskie sredstva obrabotki i analiza izobrazhenii na osnove preobrazovaniia Hafa. Minsk. Available at:

Vershok, D. A., Sadyhov, R. H. (1999). Algoritm vydeleniia invariantnyh informativnyh priznakov dlia raspoznavaniia rukopisnyh simvolov, osnovannyi na preobrazovanii Hafa. Identifikaciia obrazov, 715.

Kudrina, M. A. (2014). Ispol'zovanie preobrazovaniia Hafa dlia obnaruzheniia priamyh linii i okruzhnostei na izobrazhenii. Izvestiia Samarskogo nauchnogo centra Rossiiskoi akademii nauk, 16 (4 (2)), 476–478.

OpenCV documentation. (2017). OpenCV. Available at:

Вradski, G., Kaehler, А. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, 580.

Hough transform. Portal «Information and Communication Technologies in Education». Available at:

Sadyhov, R. H., Vershok, D. A. (1996). Algoritmy vydeleniia konturov binarnogo izobrazheniia na osnove modificirovannogo preobrazovaniia Hafa. Materialy nauchno-tehnicheskoi konferentsii, posviashhennoi 30-letiiu instituta. Brest: BPI, 108109.

Ablameiko, S. V., Lagunovskii, D. M. (2000). Obrabotka izobrazhenii. Tehnologiia, metody, primenenie. Moscow: Amalfeia, 304.

Anisimov, B. V., Kurganov, V. D., Zlobin, V. K. (1983). Raspoznavanie i tsifrovaia obrabotka izobrazhenii. Moscow: Vysshaia shkola, 295.

Gonzalez,‎ R. C., Woods, R. E. (2007). Digital Image Processing. Ed. 3. Pearson, 976.

Jane, B. (2007). Digital Image Processing. Moscow: Tehnosfera, 584.

Forsyth,‎ D. A., Ponce, J. (2011). Computer Vision: A Modern Approach. Ed. 2. Pearson, 792.

Petkovic, Т., Pribanic, Т., Donlic, М. (2015). The Self-Equalizing De Bruijn Sequence for 3D Profilometry. Available at:

Lee, K. H., Je, C., Lee, S. W. (2007). Color-Stripe Structured Light Robust to Surface Color and Discontinuity. Lecture Notes in Computer Science, 507–516. doi: 10.1007/978-3-540-76390-1_50

Kessel, J. van. (2013). Shape from colored structured light and polarization, 1–46. Available at:

Rijn, R. van. (2011, February 24). Generating de Bruijn sequences and Lyndon words. Available at:

Zeeshan, А. А. (2016, June 22). A Quick Introduction To Computer Vision Using C#. Available at:



  • There are currently no refbacks.

Copyright (c) 2017 Yuliia Lymarenko, Dmitry Tatievskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)