PRIORITY EVENTS DETERMINATION FOR THE RISK-ORIENTED MANAGEMENT OF ELECTRIC POWER SYSTEM

Mykola Kosterev, Volodymyr Litvinov

Abstract


The task of risk-oriented management of the electric power system in conditions of multi-criteria choice is considered. To determine the most effective measures, the implementation of which will reduce the magnitude of the risk of an emergency situation, multi-criteria analysis methods are applied. A comparative analysis of the multi-criteria alternative (ELECTRE) ranking method based on utility theory and the Pareto method, which defines a subset of non-dominant alternatives, is carried out. The Pareto method uses in its algorithm only qualitative characteristics of the advantage and allows only to distinguish a group of competitive solutions with the same degrees of non-dominance. Given the large number of evaluation criteria, the Pareto method is ineffective because the resulting subset of activities is in the field of effective trade-offs, when no element of the set of measures can be improved without degrading at least one of the other elements. The ELECTRE method is a pairwise comparison of multi-criteria alternatives based on utility theory. This method allows to identify a subset of the most effective activities. The number of elements of the resultant subset is regulated by taking into account the coefficients of importance of optimization criteria and expert preferences.


Keywords


electric power system; multi-criteria choice; ELECTRE method; Pareto method; importance factor

Full Text:

PDF

References


Kosteriev, M. V., Bardyk, Ye. I., Litvinov, V. V. (2014). Vyznachennia Pareto-optymalnykh rishen pry ryzyk-oriientovanomu preventyvnomu upravlinni rezhymamy elektroenerhetychnoi systemy. Hidroenerhetyka Ukrainy, 4, 51–54.

Handschin, E., Jurgens, I., Neumann, C., Rehtanz, C. (2008). Long term optimization for risk-oriented asset management. 16th Power Systems Computation Conference. Glasgow. Available at: https://www.pscc-central.org/uploads/tx_ethpublications/pscc2008_597.pdf

Zickler, U., Schnettler, A., Zhang, X., Gockenbach, E. (2007). Statistical approach for component state evaluation implemented in asset management of distribution systems. 19th International Conference of Electricity Distribution. Vienna.

Schwan, M., Schilling, C., Zickler, U., Schnettler, A. (2006). Component reliability prognosis in asset management methods. 9th International Conference of Probabilistic Methods Applied to Power Systems. Stockholm. doi: 10.1109/pmaps.2006.360287

Wang, Q. (2013). Risk-based security-constrained optimal power flow: Mathematical fundamentals computational strategies, validation, and use within electricity markets. Iowa State University, 178.

Kosteriev, M. V., Bardyk, Ye. I., Litvinov, V. V. (2013). Nechitko-statystychnyi pidkhid do otsiniuvannia ekspluatatsiinoi ta rezhymnoi nadiinosti ob’iektiv pidsystem elektroenerhetychnoi systemy. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriia: «Elektrotekhnika i enerhetyka», 1 (14), 122–128.

Litvinov, V. V. (2014). Nechitko-statystychnyi pidkhid do otsiniuvannia ryzyku poshkodzhennia obmotky statora hidroheneratora. Hidroenerhetyka Ukrainy, 2-3, 74–80.

Orlovskiy, S. A. (1981). Problemy prinyatiya resheniy pri nechetkoy iskhodnoy informatsii. Moscow: Nauka, 208.

Kosterev, M., Litvinov, V. (2016). Development of fuzzy statistical method of optimal resource allocation among technical departments of an electric utility company. Eastern-European Journal of Enterprise Technologies, 3 (4 (81)), 20–27. doi: 10.15587/1729-4061.2016.70522

Larichev, O. I. (2000). Teoriya i metody prinyatiya resheniy. Moscow: Logos, 296.

Larichev, O. I., Pavlova, L. I., Osipova, E. A. (1990). Mnogokriterial'nye zadachi s konstruiruemymi variantami resheniy pri ogranichennykh resursakh. Problemy i metody prinyatiya unikal'nykh i povtoryayushhikhsya resheniy, 10, 45–69.

Royzenzon, G. V. (2008). Interaktivnye metody snizheniya razmernosti priznakovogo prostranstva v zadachakh mnogokriterial'nogo prinyatiya resheniy. Moscow, 25.

Figueira, J. (2009). ELECTRE Methods. INESC-Coimbra, 34.

Sevkli, M. (2010). An application of the fuzzy ELECTRE method for supplier selection. International Journal of Production Research, 48 (12), 3393–3405. doi: 10.1080/00207540902814355

Domarev, V. V. (2002). Bezopasnost' informatsionnykh tekhnologiy. Metodologiya sozdaniya sistem zashhity. Kyiv: OOO «TID «DS», 688.

Remennikov, V. B. (2005). Upravlencheskie resheniya. Minsk: Yuniti, 144.

Zadeh, L. A. (1973). Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics, 3 (1), 28–44. doi: 10.1109/tsmc.1973.5408575

Saaty, T. L. (1990). Eigenvector and logarithmic least squares. European Journal of Operational Research, 48 (1), 156–160. doi: 10.1016/0377-2217(90)90073-k

Asai, K., Vatada, D., Ivai, S. et. al.; Terano, T., Asai, K., Sugeno, M. (Eds.) (1993). Prikladnye nechetkie sistemy. Moscow: Mir, 368.

Borisov, A. N., Alekseev, A. V., Merkur'ev, G. V. (1989). Obrabotka nechetkoy informatsii v sistemakh prinyatiya resheniy. Moscow: Radio i svyaz, 304.




DOI: http://dx.doi.org/10.21303/2461-4262.2018.00643

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Mykola Kosterev, Volodymyr Litvinov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)