RATIONAL CHOICE OF TWO-SUPPORT SPINDLES FOR MACHINING CENTERS WITH LUBRICATION SYSTEM

Oleg Krol, Petko Tsankov, Volodymyr Sokolov

Abstract


In the multivariate design mode, based on the effective parallel design facilities, the rational choice of the design of the two-support spindle for the machining center is the main aim of this article. A modified scheme for selecting a spindle unit is proposed, which reflects the procedure for the formation of its main components: "Representations on the Spindle Unit Variations" and "Representations on the Designer's preferences". A concept is introduced and a component of the selection scheme is described: "Procedural model", which makes it possible to realize the mechanism of forming preferences of the machine tool builder in the process of selecting the best design alternative. 3D models of the horizontal and vertical spindle heads for the multi-operation CNC machine are developed on the basis of the proposed modified scheme of rational choice. The analysis of various methods and technology of spindle units lubrication is presented and it is shown how the declarative (the most complete description of the methods and features of lubrication) representation in the selection of design priorities and the adoption of design solutions is used. The introduction of rational choice facilities into the practice of design activities in the field of machine tool building improves the efficiency of the multivariate design with a return character, significantly increasing the productivity of work and the quality of the design decisions.


Keywords


rational choice; spindle unit; lubrication system; declarative model; procedural model

Full Text:

PDF

References


Krol, O. S., Sokolov, V. I. (2017). Metody i procedury racional'nogo vybora v stankostroenii [Methods and procedures of rational choice in machine tool construction]. Lugansk: VNU, 112.

Krol, O. S., Sokolov, V. I. (2017). Metody i procedury inzhenernogo prognozirovaniуa v stankostroenii [Methods and procedures of engineering forecasting in machine tool building]. Lugansk: VNU, 114.

Emel'janov, S. V., Nappel'baum, Je. L. (1981). Sistemy, celenapravlennost', refleksiya [Systems, focus, reflection]. Sistemnye issledovaniya. Metodologicheskie problemy, 7–38.

Puhovskij, E. S. (1991). Matematicheskoe modelirovanie processa tehnologicheskogo proektirovaniya stanochnyh sistem [Mathematical modeling of process of technological design of machine systems]. Tehnologiya i avtomatizaciya mashinostroeniya, 47, 77–87.

Aver'janov, O. I. (1987). Modul'nyj princip postroeniya stankov s ChPU [Modular principle of building CNC machines]. Moscow: Mashinostroenie, 232.

Temchin, G. I. (1957). Teoriya i raschet mnogoinstrumental'nyh naladok [Theory and calculation of multi-instrumental adjustments]. Moscow: Mashgiz, 556.

Gil'man, A. M., Gostev, G. V., Egorov, Ju. B., Jasanov, Ju. V. (1957). Avtomatizirovannoe proektirovanie optimal'nyh naladok metallorezhushhih stankov [Automated design of optimal settings for metal-cutting machines]. Moscow: Mashinostroenie.

Basin, Ju. Ja., Korol', I. V., Rozental', P. L. (1985). Avtomatizirovannoe proektirovanie instrumental'nyh naladok na JeVM [Automated design of instrumental adjustments on a computer]. Stanki i instrument, 2, 3–4.

Push, V. Je. (1985). Metallorezhushhie stanki [Metal-cutting machine tools]. Moscow: Mashinostroenie, 256.

Pronikov, A. S., Borisov, E. I., Bushuev, V. V. et. al. (1995). Proektirovanie metallorezhushhih stankov i stanochnyh sistem [Design of metal-cutting machine tools and machine system]. Moscow: Mashinostroenie, 320.

Yoshimura, M. (1984). Multiobjektive design optimization of mashine-tool spindles. Transactions of the ASME, 48–53.

Krol, O. S. (1997). Instrumental'nye sredstva racional'nogo vybora tehnologicheskih sistem mehanoobrabotki [Instrumental means of rational choice of technological systems of machining]. Vestnik NTUU (KPI), 32, 157–161.

Bal'mont, V. B., Gorelik, I. G., Figatner, A. M. (1987). Raschety vysokoskorostnyh shpindel'nyh uzlov [Calculations of high-speed spindle nodes]. Moscow: VNIITEMR, 52.

Shevchenko, S., Mukhovaty, A., Krol, O. (2017). Gear Clutch with Modified Tooth Profiles. Procedia Engineering, 206, 979–984. doi: 10.1016/j.proeng.2017.10.581

Krol, O. S., Burlakov, E. I. (2013). Modelirovanie shpindel'nogo uzla obrabatyvayushhego centra [Modeling the spindle center of the machining center]. Vіsnik Nacіonal'nogo tehnіchnogo unіversitetu «HPІ». Serіya: Novі rіshennja v suchasnih tehnologіyah, 11 (985), 33–38.

Shevchenko, S., Mukhovaty, A., Krol, O. (2016). Geometric Aspects of Modifications of Tapered Roller Bearings. Procedia Engineering, 150, 1107–1112. doi: 10.1016/j.proeng.2016.07.221

Stefanov, G., Tsankov, P., Ivanova, N. (2006). Prouchvane na tehnologichni metodi i shemi za regenerirane na otraboteni masla [Study of technological methods and schemes for regeneration of waste oils]. Osma nauchna konferenciya – “Smoljan-2006”-Sbornik dokladi, 243–247.

Tsankov, P. (2015). Numerical Investigation of the Influence of Gas Temperature upon the Characteristics of Flat Aerostatic Bearing using CFD-Simulation. IJAR (Indian Journal of applied research), 5 (4), 764–766.

Sokolov, V., Krol, O. (2017). Installations Criterion of Deceleration Device in Volumetric Hydraulic Drive. Procedia Engineering, 206, 936–943. doi: 10.1016/j.proeng.2017.10.575

Sokolov, V., Rasskazova, Y. (2016). Automation of control processes of technological equipment with rotary hydraulic drive. Eastern-European Journal of Enterprise Technologies, 2 (2 (80)), 44–50. doi: 10.15587/1729-4061.2016.63711

Reshetov, D. N. (1972). Detali i mehanizmy metallorezhushhih stankov [Details and mechanisms of metal-cutting machine tools]. Vol. 2. Moscow: Mashinostroenie, 520.




DOI: http://dx.doi.org/10.21303/2461-4262.2018.00648

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Oleg Krol, Petko Tsankov, Volodymyr Sokolov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)