INFORMATION MODEL OF CLOUD APP SCALING WITH VARIABLE LOAD PEAKS

Tamara Savchuk, Andrii Kozachuk

Abstract


The information model of cloud app was done. It is a formal description of cloud app infrastructure and possible transitions between them, and cloud app current working state classification criterion. Cloud app current state classification criterion on the basis of Page-Hinckley method and calendar of events related to the cloud app working state considers the current state to one of three classes in order to improve the accuracy of prediction of cloud app workload.
Proposed criterion was compared with standard offline criterion that analyzes information about the entire time series of cloud app through a considerable time after the events that lead to the load peak, and therefore can’t be used when grading in real time. It is shown that the classification of cloud app state is consistent in 92 % of cases.
The resulting information model of cloud app scaling with variable load peaks can be used as a component of information technology for cloud app scaling with variable load peaks.


Keywords


cloud computin; cloud app information model; cloud app state classification

Full Text:

PDF

References


Marco, A. S. Netto, Carlos, Cardonha, Renato, L. F. Cunha, Marcos, D. Assuncao (2014). Evaluating Auto-scaling Strategies for Cloud Computing Environments. IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, 187–196. doi: 10.1109/mascots.2014.32

Garcia-Gomez, S., Escriche-Vicente, M., Arozarena-Llopis, P., Lelli, F., Taher, Y., Momm, C. et. al. (2012). 4CaaSt: Comprehensive Management of Cloud Services through a PaaS. 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications. doi: 10.1109/ispa.2012.72

Neill, D. B., Wong, W.-K. (2009). Tutorial on Event Detection. Available at: http://www.cs.cmu.edu/~neill/papers/eventdetection.pdf

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2 (6), 568–576. doi: 10.1109/72.97934

MacLennan, J., Tang, Z., Crivat, B. (2011). Data mining with Microsoft SQL server 2008. John Wiley & Sons.

Ananij, V. (2006). Levitin Glava 10. Ogranicheniya moshhi algoritmov: Derevya prinyatiya resheniya. Algoritmy: vvedenie v razrabotku i analiz=Introduction to The Design and Analysis of Aigorithms. Moscow:«Vilyams, 409–417.

Sistema poshuku podіj u rіznorіdnix danix Stucco. Available at: http://stucco.github.io

Sistema viyavlennya anomalіj u chasovix ryadax WSARE. Available at: http://www.autonlab.org/autonweb/16620.html

Patil, G. P., Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological statistics, 11 (2), 183–197. doi: 10.1023/b:eest.0000027208.48919.7e

Lucenko, O. P., Bajbuz, O. G. (2012). Oglyad metodіv poshuku rozladnan і perspektivi їxnogo zastosuvannya u texnіchnomu analіzі bіrzhovix kotiruvan. Aktualnі problemi avtomatizacії ta іnformacіjnix texnologіj, 16, 84–96.

Nikiforov, I. V. (1983). Posledovatelnoe obnaruzhenie izmeneniya svojstv vremennyx ryadov. Moscow: Nauka, 199.

Palshikar, G. (2009). Simple algorithms for peak detection in time-series. In Proc. 1st Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence.

Buxmann, P., Hess, T., Lehmann, S. (2008). Software as a Service. Wirtschaftsinformatik, 50 (6), 500–503. doi: 10.1007/s11576-008-0095-0

Virtual Machine and Cloud Service Sizes for Azure. Available at: https://msdn.microsoft.com/en-us/library/azure/dn197896.aspx

Golyachuk, N. V., Golyachuk, S. Е., Rixlyuk, V. S. (2014). Xmarnі obchislennya: zavtrashnіj den bіznesu. Ekonomіchnі nauki. Cerіya: Oblіk і fіnansi, 11 (1), 37–43.

Squillace, R. (2015). How to Use the Autoscaling Application Block. Available at: https://azure.microsoft.com/en-us/documentation/articles/cloud-services-dotnet-autoscaling-application-block/

Andrienko, G., Andrienko, N., Mladenov, M., Mock, M., Poelitz, C. (2010). Extracting events from spatial time series. In Information Visualisation (IV), 2010 14th International Conference, 48–53. doi: 10.1109/iv.2010.17

World Cup Web Site Access Logs. Available at: http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

Trenkenshu, A. I. (2014). Programmnaya identifikaciya klyuchevyx figur i predskazanie tendencij grafikov birzhevyx kotirovok po ekstremalnym priznakam na osnove algoritmov sortirovki. Taganrog.

Savchuk, T. O. (2015). Information technology of scaling cloud app with variable load peaks. Technology audit and production reserves, 5 (2 (25)), 4–11. doi: 10.15587/2312-8372.2015.51716

Kozachuk, A. V., Savchuk, T. O. (2015). Prognozuvannya kіlkostі merezhevix zapitіv do xmarnogo zastosunku. Visnyk Nacional’nogo universytetu “L’vivs’ka politehnika”.




DOI: http://dx.doi.org/10.21303/2461-4262.2016.00079

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Tamara Savchuk, Andrii Kozachuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)