Aleksandr Kondratenko, Igor Boikov, Hennadii Marenko, Ivan Tsebriuk, Oleksandr Koval, Andrii Koval


The solution of the tasks assigned to the National Guard of the state implies the presence of certain forces and means with the appropriate technical equipment. A well-known place among such tasks is security of important state facilities. Various physical effects and methods, including radar, are used to create security systems.

The development of radar technology and technology made it possible to increase both the quantity and quality of the received information, as well as the use of radar stations for observing living objects.

The industry today produces bioradioradars for detecting people and controlling their movements. All samples are made in a single-position version and have a relatively high cost, the fact of their work is easily detected, which facilitates their suppression, including force.

In order to increase the secrecy of work, it is proposed to use the methods of separated, more precisely, bistatic location to control the area in front of particularly important objects.

The defining detection index is the effective reflective surface (ERS), which is about 1 m2 for a person. Equipment, weapons and protective equipment contributes to the increase in the ERS.

Given the small reflective surface of biological objects, it is proposed to limit the area of responsibility to the sector form in which, at a certain bistatic angle, the effect of a significant increase in the signal/(interference+noise) ratio is manifested. For a specific definition of the gain, it is necessary to choose the operating frequency of the bistatic system and its geometry.

For greater secrecy, it is advisable to use the transmitters of radio and television broadcasting, mobile communications, etc. The estimates found, for example, when using digital television transmitters (T2), indicate that the creation of a secretive bistatic system is quite possible – at least in a geometric interpretation.


biolocation; bistatic RLS; bistatic angle; terrorism; effective reflective surface

Full Text:



Volhonskiy, V. V., Malyshkin, S. L. (2013). The issue of unity of terminology in physical protection applications. Informatsionno-upravlyayuschie sistemy, 5, 61–68.

Magauenov, R. G. (2004). Sistemy ohrannoy signalizatsii: osnovy teorii i printsipy postroeniya. Moscow: Goryachaya liniya - Telekom, 367.

Radar “BARSUK-A”. Available at:

Lis (RLS). Available at:Лис_(РЛС)

Mobile complex of surface recognition and ECM “JAB”. Available at:

Radiolokatsionniy kompleks ohrany obektov. Available at:

Mosalev, V. (2000). Radiolokatsionnye stantsii razvedki nazemnyh dvizhuschihsya tseley. Zarubezhnoe voennoe obozrenie, 10, 20–22.

Zaytsev, N. A., Platov, A. V., Potapov, V. A. (2014). Radiolokatsionnye stantsii razvedki nazemnyh dvizhuschihsya tseley. Sovremenniy uroven' i osnovnye napravleniya razvitiya. Vestnik Kontserna PVO «Almaz–Antey», 1, 41–44.

Radiolokatsionnyiy kompleks 52E6 “Struna-1” (2018). Voenno-tehnicheskiy sbornik «Bastion». Zhurnal oboronno-promyishlennogo kompleksa. Available at:

“Silent Sentry” A New Type of Radar. Available at:

Johnsen, T., Olsen, K. E. (2006). Bi- and Multistatic Radar. In Advanced Radar Signal and Data Processing. Educational Notes RTO-EN-SET-086, Paper 4. Neuilly-sur-Seine, France: RTO, 4.1–4.34.

Kulpa, K. (2014). Passive Radar. Radar Symposium 2014. KACST, Riyadh Saudi Arabia. Available at:

Griffiths, H. (2013). Bistatic and Multistatic Radar. IEEE AESS Distinguished Lecture. ETH Zurich, 78.

Skolnik, M. I. (1961). An Analysis of Bistatic Radar. IRE Transactions on Aeronautical and Navigational Electronics, ANE-8 (1), 19–27. doi:

Skolnik, M. L. (2001). Introduction to Radar Systems. New York: McGraw-Hill, 1352.

Chernyak, V. S. (1993). Mnogopozitsionnaya radiolokatsiya. Moscow: Radio i svyaz', 416.

Blyahman, A. B., Runova, I. A. (2001). Bistaticheskaya effektivnaya ploschad' rasseyaniya i obnaruzhenie obektov pri radiolokatsii «na prosvet». Radiotekhnika i elektronika, 46 (4), 424–432.

Chastoty i nomera kanalov tsifrovogo efirnogo televideniya T2 i adresa razmescheniya peredatchikov v Ukraine. Available at:

Raschet dal'nosti pryamoy vidimosti LOS dlya besprovodnyh mostov. Available at:

Mol'kov, A. V. (2009). Harakteristiki obnaruzheniya tseli pri radiolokatsii "na prosvet". Metody i ustroystva peredachi i obrabotki informatsii, 11, 280–283.

Radiolokatsionnaya stantsiya "Kasta-2E2". Available at:

Glaser, J. (1985). Bistatic RCS of Complex Objects near Forward Scatter. IEEE Transactions on Aerospace and Electronic Systems, AES-21 (1), 70–78. doi:

Blyakhman, A. B., Runova, I. A. (1999). Forward scattering radiolocation bistatic RCS and target detection. Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249). doi:

Bezoušek, P., Schejbal, V. (2008). Bistatic and Multistatic Radar Systems. Radioengineering, 17 (3), 53–59.



  • There are currently no refbacks.

Copyright (c) 2019 Aleksandr Kondratenko, Igor Boikov, Hennadii Marenko, Ivan Tsebriuk, Oleksandr Koval, Andrii Koval

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)