EVALUATION OF THE PROSPECTS FOR PRELIMINARY COOLING OF NATURAL GAS ON MAIN PIPELINES BEFORE COMPRESSION THROUGH THE DISCHARGE OF EXHAUST HEAT OF GAS-TURBINE UNITS

Oleksandr Titlov, Oleg Vasyliv, Tetiana Sahala, Nataliia Bilenko

Abstract


For the transportation of natural gas through pipelines, gas pumping units (GPU) are installed at numerous compressor stations (CS), the energy carrier for which, in most cases, is transported natural gas. 0.5 ... 1.5 % of the volume of transported gas is consumed (burned) by the pumping unit drive.

The situation with the replacement of existing equipment with modern equipment is associated with significant investments, on the one hand, and the uncertainty with the transit of Russian natural gas through gas transmission systems of Ukraine in the near future. More promising is the way to increase the efficiency of the GPU cycle through the use of circuits with preliminary cooling of the compressed gas.

The aim of this research is studying the prospects for the application of technology for pre-cooling technological natural gas before compression in a gas pumping unit based on heat-using absorption refrigeration machines.

To analyze the effect of pre-cooling of technological natural gas on the compressor stations of main gas pipelines, gas pumping units – GTK-10I were selected.

The calculation of GPU power consumption and fuel gas consumption at various temperatures of the process gas at the inlet to the supercharger was performed.

The calculation of the operating parameters of the gas pumping unit is performed and the energy and financial prospects of the technology for cooling the process gas before compression in the GPU CS are shown. For the current economic situation (July 2019) in the Ukrainian gas market, the daily decrease in operating costs in standard gas pipelines with a decrease in gas temperature before compression in the gas pumping unit by 20 K ranges from 1800 USD to 3360 USD.

A scheme of a recycling plant based on absorption water-ammonia refrigeration machine (AWRM) is proposed, which in the range of initial data allows to reduce the temperature of technological natural gas before compression by 11 ... 13 ° C.


Keywords


main pipelines; gas pumping units; natural gas cooling before compression; absorption water-ammonia refrigeration machine

Full Text:

PDF

References


Serediuk, M. D. (2002). Proektuvannia ta ekspluatatsiya naftoproduktoprovodiv. Ivano-Frankivsk: IFNTUNH, 282.

Govdiak, R. M. (2012). The Increase of Energy and Ecology Efficiency of the Main Gas Pipelines Functioning. Energotehnologii i resursosberezhenie, 3, 56–62. Available at: http://nbuv.gov.ua/UJRN/ETRS_2012_3_11

MShU "Skolkovo": ODIN GOD DO CHASA «Ch»: v poiskah kompromissa po ukrainskomu gazovomu tranzitu. Available at: https://nangs.org/analytics/mshu-skolkovo-odin-god-do-chasa-ch-v-poiskakh-kompromissa-po-ukrainskomu-gazovomu-tranzitu-dekabr-2018-pdf

Dombrovskiy, A., Unigovskiy, L. GTS: vremya ne zhdet. Available at: https://zn.ua/energy_market/gts-vremya-ne-zhdet-276983_.html

Kirillin, V. A., Sychev, V. V., Sheyndlin, A. E. (2008). Tehnicheskaya termodinamika. Moscow: Izdatel'stvo MEI, 496.

Influence of Ambient Temperature Conditions. Main engine operation of MAN B&W two-stroke engines (2010). MAN Diesel & Turbo, Copenhagen, Denmark, 17.

Radchenko, A. N., Konovalov, D. V. (2011). Resursosberegayushchaya teploispol'zuyushchaya ustanovka konditsionirovaniya vozduha na vhode dizelya transportnogo sudna. Aviatsionno-kosmicheskaya tehnika i tehnologiya, 5, 61–67.

Radchenko, R. N., Bogdanov, N. S., Shcherbak, Yu. G. (2016). Ohlazhdenie nadduvochnogo vozduha malooborotnogo dizelya s ispol'zovaniem ego tepla. Kompressornoe i ehnergeticheskoe mashinostroenie, 1 (43), 35–39.

Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negotsiant», 712.

Titlov, A. S., Sagala, T. A., Artyuh, V. N., D'yachenko, T. V. (2017). Analiz perspektiv ispol'zovaniya paroehzhektornoy i absorbtsionnoy holodil'nyh ustanovok dlya ohlazhdeniya tehnologicheskogo gaza i polucheniya zhidkogo uglevodorodnogo topliva. Kholodylna tekhnika ta tekhnolohiya, 53 (6), 11–18. doi: https://doi.org/10.15673/ret.v53i6.920

Uchida, S., Nishiguchi, A. (2006). Low temperature absorption refrigeration machine with water-LiBr mixed refrigerant. Int. J. Refrigeration, 81 (946), 618–621.

Baranenko, A. V., Posylin, D. N., Malinina, O. S. (2017). Performance of single-stage absorption lithium bromide refrigerating machine at boiling points below 0 оС. Journal International Academy of Refrigeration, 16 (4), 52–58. doi: https://doi.org/10.21047/1606-4313-2017-16-4-52-58

Galimova, L. V. (1997). Absorbtsionnye holodil'nye mashiny i teplovye nasosy. Astrahan': Izd-vo AGTU, 226.

Postanova Natsionalnoi komisiyi, shcho zdiysniuie derzhavne rehuliuvannia u sfer enerhetyky ta komunalnykh posluh. 30.09.2015. No. 2494. Zareiestrovano v Ministerstvi yustytsiyi Ukrainy 6 lystopada 2015 r., No. 1379/27824.

Kopey, B. V., Bellauar, A., Abdel'baki, N. (2009). Nadezhnost' gazoperekachivayushchih agregatov s tsentrobezhnym nagnetatelem RF-2BB-30 "KUPER-BESSEMER". Naukovyi visnyk IFNTUNH, 3 (21), 92–98.

Naftogaz v iyule snizhaet tsenu gaza dlya promyshlennosti v srednem na 13 %. Available at: https://www.ukrinform.ru/rubric-economy/2725454-naftogaz-v-iule-snizaet-cenu-gaza-dla-promyslennosti-v-srednem-na-13.html

Osadchuk, E. A., Titlov, A. S., Kuzakon', V. M., Shlapak, G. V. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology Audit and Production Reserves, 3 (3 (23)), 30–37. doi: https://doi.org/10.15587/2312-8372.2015.44139

Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negotsiant», 712.

Sorogin, F. G. (2017). Metod rascheta ehnergeticheskih pokzateley GTP. Vestnik dvigatelestroeniya, 2, 29–33.

Absorbtsionnye vodoammiachnye holodil'nye mashiny. Available at: http://www.stroitelstvo-new.ru/holodilnye-ustanovki/absorbcionnye-vodoammiachnye.shtml

GOST R 53763-2009. Gazy goryuchie prirodnye. Opredelenie temperatury tochki rosy po vode (2010). Moscow: Standartinform, 39.

GOST R 53762-2009. Gazy goryuchie prirodnye. Opredelenie temperatury tochki rosy po uglevodorodam (2010). Moscow: Standartinform, 15.




DOI: http://dx.doi.org/10.21303/2461-4262.2019.00978

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Oleksandr Titlov, Oleg Vasyliv, Tetiana Sahala, Nataliia Bilenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2461-4262 (Online), ISSN 2461-4254 (Print)