A MULTI-MARKER MODEL FOR PREDICTING DECOMPENSATED HEART FAILURE IN PATIENTS WITH PRIOR ACUTE MYOCARDIAL INFARCTION

  • Khrystyna Levandovska Ivano-Frankivsk National Medical University, Ukraine
Keywords: acute myocardial infarction, decompensated heart failure, biomarkers, NT-proBNP, ST2

Abstract

The aim of the study was to assess the prognostic value of determining the plasma concentration of NT-proBNP and ST2 in the patients with decompensated HF and prior acute myocardial infarction and their combination in this category of patients.

Materials and methods. There were examined 120 patients with acute myocardial infarction and stage II A-B decompensated chronic HF according to the classification proposed by Vasylenko V. Kh. and Strazhesko M.D., NYHA functional class (FC) III-IV. The patients with Q-QS wave MI (60 individuals) and non Q MI (60 individuals) were divided into 4 groups depending on the treatment methods.

Study groups were homogenous by age, gender, disease severity, duration of the post-infarction period, clinical signs of decompensation, which served as a basis for inclusion of the patients in the study.

All the patients underwent the six-minute walk test in a quiet 30-50-m long hospital corridor in the morning. N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) and ST-2 were analyzed in all patients.

Results. Promising biomarkers of HF decompensation in the post-infarction period were studied. In the patients with prior Q-QS MI and decompensated HF, NT-proBNP level was (950.38±3.15) pmol/l (p<0.05); in the patients with prior MI without signs of decompensated HF, it was (580.15±3.03) pmol/l (p˂0.05); in apparently healthy individuals, the level of NT-proBNP was found to be (111.20±3.47) pmol/l.

ST2 level was (14.80±1.61) ng/ml, (36.00±1.43) ng/ml and (49.22±1.40) ng/ml in the patients of Group 1, Group 2 and Group 3, respectively (p˂0.05).

Similar changes were found in patients with decompensated HF in postinfarction period after non Q MI.

Conclusions. The increase in plasma concentration of sST2 is associated with the activation of both neurohumoral and fibrous pathways and can help in detecting the patients with decompensated HF in the post-infarction period and predicting the risk of its development.

Our results confirmed the results of other multiple studies reporting ST2 in combination with NT-proBNP to be valuable tools for prognosing the development of decompensated HF in the patients with prior MI. ST2, alongside with NT-proBNP, is a promising biomarker to be included in the diagnostic panel for detecting acute HF and can provide additional information on risk stratification for such patients during hospitalization and at the time of discharge from the hospital.

Downloads

Download data is not yet available.

Author Biography

Khrystyna Levandovska, Ivano-Frankivsk National Medical University

Department of internal medicine No. 2 and nursing

References

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M. et. al. (2015). Heart Disease and Stroke Statistics—2015 Update. Circulation, 131 (4). doi: http://doi.org/10.1161/cir.0000000000000152

Piepoli, M. F., Hoes, A. W., Agewall, S., Albus, C., Brotons, C., Catapano, A. L. et. al. (2016). 2016 European Guidelines on cardiovascular disease prevention in clinical practice. European Heart Journal, 37 (29), 2315–2381. doi: https://doi.org/10.1093/eurheartj/ehw106

Stenemo, M., Nowak, C., Byberg, L., Sundström, J., Giedraitis, V., Lind, L. et. al. (2017). Circulating proteins as predictors of incident heart failure in the elderly. European Journal of Heart Failure, 20 (1), 55–62. doi: http://doi.org/10.1002/ejhf.980

Wettersten, N., Maisel, A. S. (2016). Biomarkers for Heart Failure: An Update for Practitioners of Internal Medicine. The American Journal of Medicine, 129 (6), 560–567. doi: http://doi.org/10.1016/j.amjmed.2016.01.013

Daniels, L. B., Maisel, A. S. (2007). Natriuretic Peptides. Journal of the American College of Cardiology, 50 (25), 2357–2368. doi: http://doi.org/10.1016/j.jacc.2007.09.021

Brunner-La Rocca, H.-P., Sanders-van Wijk, S. (2019). Natriuretic Peptides in Chronic Heart Failure. Cardiac Failure Review, 5 (1), 44–49. doi: http://doi.org/10.15420/cfr.2018.26.1

Maisel, A. S., Krishnaswamy, P., Nowak, R. M., McCord, J., Hollander, J. E., Duc, P. et. al. (2002). Rapid Measurement of B-Type Natriuretic Peptide in the Emergency Diagnosis of Heart Failure. New England Journal of Medicine, 347 (3), 161–167. doi: http://doi.org/10.1056/nejmoa020233

Redfield, M. M., Rodeheffer, R. J., Jacobsen, S. J., Mahoney, D. W., Bailey, K. R., Burnett, J. C. (2002). Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology, 40 (5), 976–982. doi: http://doi.org/10.1016/s0735-1097(02)02059-4

Stienen, S., Salah, K., Dickhoff, C., Carubelli, V., Metra, M., Magrini, L. et. al. (2015). N-Terminal Pro–B-Type Natriuretic Peptide (NT-proBNP) Measurements Until a 30 % Reduction Is Attained During Acute Decompensated Heart Failure Admissions and Comparison With Discharge NT-proBNP Levels: Implications for In-Hospital Guidance of Treatment. Journal of Cardiac Failure, 21 (11), 930–934. doi: http://doi.org/10.1016/j.cardfail.2015.07.011

Kristensen, S. L., Jhund, P. S., Mogensen, U. M., Rørth, R., Abraham, W. T., Desai, A. et. al. (2017). Prognostic Value of N-Terminal Pro-B-Type Natriuretic Peptide Levels in Heart Failure Patients With and Without Atrial Fibrillation. Circulation: Heart Failure, 10 (10). doi: http://doi.org/10.1161/circheartfailure.117.004409

Dieplinger, B., Mueller, T. (2015). Soluble ST2 in heart failure. Clinica Chimica Acta, 443, 57–70. doi: http://doi.org/10.1016/j.cca.2014.09.021

Mueller, T., Jaffe, A. S. (2015). Soluble ST2– Analytical Considerations. The American Journal of Cardiology, 115 (7), 8B–21B. doi: http://doi.org/10.1016/j.amjcard.2015.01.035

Ibrahim, N. E., Januzzi, J. L. (2017). Beyond Natriuretic Peptides for Diagnosis and Management of Heart Failure. Clinical Chemistry, 63 (1), 211–222. doi: http://doi.org/10.1373/clinchem.2016.259564

Kim, S. H., Kim, H. L., Lim, W. H. et. al. (2018). Soluble ST2 is a novel marker of aortic stiffness and arteriosclerosis measured by invasive hemodynamic study. Elsevier Inc, 109.

Najjar, E., Faxén, U. L., Hage, C., Donal, E., Daubert, J.-C., Linde, C., Lund, L. H. (2019). ST2 in heart failure with preserved and reduced ejection fraction. Scandinavian Cardiovascular Journal, 53 (1), 21–27. doi: http://doi.org/10.1080/14017431.2019.1583363

Aleksova, A., Paldino, A., Beltrami, A., Padoan, L., Iacoviello, M., Sinagra, G. et. al. (2019). Cardiac Biomarkers in the Emergency Department: The Role of Soluble ST2 (sST2) in Acute Heart Failure and Acute Coronary Syndrome – There is Meat on the Bone. Journal of Clinical Medicine, 8 (2), 270. doi: http://doi.org/10.3390/jcm8020270

Scott, I. C., Majithiya, J. B., Sanden, C., Thornton, P., Sanders, P. N., Moore, T. et. al. (2018). Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Scientific Reports, 8 (1). doi: http://doi.org/10.1038/s41598-018-21589-2

Daniels, L. B., Bayes-Genis, A. (2014). Using ST2 in cardiovascular patients: a review. Future Cardiology, 10 (4), 525–539. doi: http://doi.org/10.2217/fca.14.36

Ky, B., French, B., McCloskey, K., Rame, J. E., McIntosh, E., Shahi, P. et. al. (2011). High-Sensitivity ST2 for Prediction of Adverse Outcomes in Chronic Heart Failure. Circulation: Heart Failure, 4 (2), 180–187. doi: http://doi.org/10.1161/circheartfailure.110.958223

AbouEzzeddine, O. F., McKie, P. M., Dunlay, S. M., Stevens, S. R., Felker, G. M., Borlaug, B. A. et. al. (2017). Soluble ST2 in Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association, 6 (2). doi: http://doi.org/10.1161/jaha.116.004382

Yucel, O., Gul, I., Zararsiz, A., Demirpence, O., Yucel, H., Cinar, Z. et. al. (2017). Association of soluble ST2 with functional capacity in outpatients with heart failure. Herz, 43 (5), 455–460. doi: http://doi.org/10.1007/s00059-017-4590-1

Januzzi, J. L., Pascual-Figal, D., Daniels, L. B. (2015). ST2 Testing for Chronic Heart Failure Therapy Monitoring: The International ST2 Consensus Panel. The American Journal of Cardiology, 115 (7), 70B–75B. doi: http://doi.org/10.1016/j.amjcard.2015.01.044

Eggers, K. M., Armstrong, P. W., Califf, R. M., Simoons, M. L., Venge, P., Wallentin, L., James, S. K. (2010). ST2 and mortality in non–ST-segment elevation acute coronary syndrome. American Heart Journal, 159 (5), 788–794. doi: http://doi.org/10.1016/j.ahj.2010.02.022

Echouffo-Tcheugui, J. B., Greene, S. J., Papadimitriou, L., Zannad, F., Yancy, C. W., Gheorghiade, M., Butler, J. (2015). Population Risk Prediction Models for Incident Heart Failure. Circulation: Heart Failure, 8 (3), 438–447. doi: http://doi.org/10.1161/circheartfailure.114.001896

Van Vark, L. C., Lesman-Leegte, I., Baart, S. J., Postmus, D., Pinto, Y. M., Orsel, J. G. et. al. (2017). Prognostic Value of Serial ST2 Measurements in Patients With Acute Heart Failure. Journal of the American College of Cardiology, 70 (19), 2378–2388. doi: http://doi.org/10.1016/j.jacc.2017.09.026

Wang, E.-W., Jia, X.-S., Ruan, C.-W., Ge, Z.-R. (2017). miR-487b mitigates chronic heart failure through inhibition of the IL-33/ST2 signaling pathway. Oncotarget, 8 (31), 51688-51702. doi: http://doi.org/10.18632/oncotarget.18393

Tseng, C. C. S., Huibers, M. M. H., Gaykema, L. H., Siera-de Koning, E., Ramjankhan, F. Z., Maisel, A. S., de Jonge, N. (2018). Soluble ST2 in end-stage heart failure, before and after support with a left ventricular assist device. European Journal of Clinical Investigation, 48 (3), e12886. doi: http://doi.org/10.1111/eci.12886

Pascual-Figal, D. A., Januzzi, J. L. (2015). The Biology of ST2: The International ST2 Consensus Panel. The American Journal of Cardiology, 115 (7), 3B–7B. doi: http://doi.org/10.1016/j.amjcard.2015.01.034

Tang, W. H. W., Wu, Y., Grodin, J. L., Hsu, A. P., Hernandez, A. F., Butler, J. et. al. (2016). Prognostic Value of Baseline and Changes in Circulating Soluble ST2 Levels and the Effects of Nesiritide in Acute Decompensated Heart Failure. JACC: Heart Failure, 4 (1), 68–77. doi: http://doi.org/10.1016/j.jchf.2015.07.015

Roberts, E., Ludman, A. J., Dworzynski, K., Al-Mohammad, A., Cowie, M. R. et. al. (2015). The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ, 350 (22), h910–h910. doi: http://doi.org/10.1136/bmj.h910

Du, H., Wonggom, P., Tongpeth, J., Clark, R. A. (2017). Six-Minute Walk Test for Assessing Physical Functional Capacity in Chronic Heart Failure. Current Heart Failure Reports, 14 (3), 158–166. doi: http://doi.org/10.1007/s11897-017-0330-3


👁 438
⬇ 278 ⬇ 0
Published
2020-02-03
How to Cite
Levandovska, K. (2020). A MULTI-MARKER MODEL FOR PREDICTING DECOMPENSATED HEART FAILURE IN PATIENTS WITH PRIOR ACUTE MYOCARDIAL INFARCTION. EUREKA: Health Sciences, (1), 34-39. https://doi.org/10.21303/2504-5679.2020.001049
Section
Medicine and Dentistry