EXPERIMENTAL RATIONALE OF THE USE OF CELL THERAPY FOR THE TREATMENT OF GLAUCOMA OPTICAL NEUROPATHY
Abstract
Development of new effective treatments for glaucomatous optic neuropathy is one of the most acute aspects of modern ophthalmology.
The aim of the work is to investigate the effectiveness of cell therapy with postnatal multipotent neural crest stem cells (NCSCs) using different cell delivery methods in a model of adrenaline-induced glaucoma.
Materials and methods. Glaucoma was induced in Wistar rats by intraperitoneal injections of 10 μg to 15 μg/100 g body weight of 0.18 % adrenaline hydrotartrate. NCSCs were delivered intravenously (5 million cells), retrobulbarly (0.5 million cells) or parabulbarly (0.5 million cells). Histomorphometric analysis of the retina was performed on stained haematoxylin-eosin sections with a thickness of 5 μm one month after the delivery of NCSCs.
Results. NCSCs transplantation by all modes of delivery caused positive morphological changes to varying degrees. Intravenous administration induced a decrease in edema in all retinal layers and a slight restoration of the cytoarchitectonics of the retinal layers. The parabulbar administration of NCSCs led to a decrease in edema and the restoration of the cytoarchitectonics of the layers, most pronouncedly the ganglion cell layer and the inner retinal layer. After the retrobulbar administration of NCSCs, the reduction in edema and restoration of the cytoarchitectonics of the layers were the most pronounced.
Conclusions. According to the results of the study, the positive effect of NCSCs transplantation in an experimental model of glaucoma was the most pronounced following the retrobulbar injection of cells. Further investigations of the mechanisms of the effect of transplanted NCSCs on retinal structure restoration are needed.Keywords
Full Text:
PDFReferences
Weinreb, R. N., Aung, T., Medeiros, F. A. (2014). The Pathophysiology and Treatment of Glaucoma. JAMA, 311(18), 1901–1911. doi: http://doi.org/10.1001/jama.2014.3192
Wang, X., Harmon, J., Zabrieskie, N., Chen, Y., Grob, S., Williams, B. et. al. (2010). Using the Utah Population Database to assess familial risk of primary open angle glaucoma. Vision Research, 50 (23), 2391–2395. doi: http://doi.org/10.1016/j.visres.2010.09.018
Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., Cheng, C.-Y. (2014). Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology, 121 (11), 2081–2090. doi: http://doi.org/10.1016/j.ophtha.2014.05.013
Križaj D. (2019). What is glaucoma? Webvision: The Organization of the Retina and Visual System. Available at: https://webvision.med.utah.edu/book/part-xii-cell-biology-of-retinal-degenerations/what-is-glaucoma/
Mahabadi N., Foris L.A., Tripathy K. (2019). Open Angle Glaucoma. Available at: http://www.ncbi.nlm.nih.gov/pubmed/28722917
Wang, Y., Xu, K., Zhang, H., Zhao, J., Zhu, X., Wang, Y., Wu, R. (2014). Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: A brief literature review presenting a novel hypothesis in glaucoma pathology. Molecular Medicine Reports, 10 (3), 1179–1183. doi: http://doi.org/10.3892/mmr.2014.2346
Elisseeff, J., Guo, Q., Lu, Q., Madrid, M., Chae, Jj. (2013). Future perspectives for regenerative medicine in ophthalmology. Middle East African Journal of Ophthalmology, 20 (1), 38–45. doi: http://doi.org/10.4103/0974-9233.106385
Manuguerra-GagnÉ, R., Boulos, P. R., Ammar, A., Leblond, F. A., Krosl, G., Pichette, V. et. al. (2013). Transplantation of Mesenchymal Stem Cells Promotes Tissue Regeneration in a Glaucoma Model Through Laser-Induced Paracrine Factor Secretion and Progenitor Cell Recruitment. STEM CELLS, 31 (6), 1136–1148. doi: http://doi.org/10.1002/stem.1364
Roubeix, C., Godefroy, D., Mias, C., Sapienza, A., Riancho, L., Degardin, J. et. al. (2015). Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Research & Therapy, 6 (1). doi: http://doi.org/10.1186/s13287-015-0168-0
Mead, B., Hill, L. J., Blanch, R. J., Ward, K., Logan, A., Berry, M. et. al. (2016). Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy, 18 (4), 487–496. doi: http://doi.org/10.1016/j.jcyt.2015.12.002
Weber, M., Apostolova, G., Widera, D., Mittelbronn, M., Dechant, G., Kaltschmidt, B., Rohrer, H. (2015). Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest-Derived Peripheral Stem Cells. Stem Cells, 33 (2), 574–588. doi: http://doi.org/10.1002/stem.1880
Narytnyk, A., Verdon, B., Loughney, A., Sweeney, M., Clewes, O., Taggart, M. J., Sieber-Blum, M. (2014). Differentiation of Human Epidermal Neural Crest Stem Cells (hEPI-NCSC) into Virtually Homogenous Populations of Dopaminergic Neurons. Stem Cell Reviews and Reports, 10 (2), 316–326. doi: http://doi.org/10.1007/s12015-013-9493-9
Binder, E., Rukavina, M., Hassani, H., Weber, M., Nakatani, H., Reiff, T. et. al. (2011). Peripheral Nervous System Progenitors Can Be Reprogrammed to Produce Myelinating Oligodendrocytes and Repair Brain Lesions. Journal of Neuroscience, 31 (17), 6379–6391. doi: http://doi.org/10.1523/jneurosci.0129-11.2011
Liu, J. A., Cheung, M. (2016). Neural crest stem cells and their potential therapeutic applications. Developmental Biology, 419 (2), 199–216. doi: http://doi.org/10.1016/j.ydbio.2016.09.006
Mikheytseva, I. N. (2014). Glaucoma modeling and adrenal stress. The Journal of Clinical and Experimental Medical Research, 2 (4), 427–437. Available at: http://essuir.sumdu.edu.ua/handle/123456789/38944
Vasyliev, R. G. (2014). In vitro properties of neural crest-derived multipotent stem cells from a bulge region of whisker follicle. Biotechnologia Acta, 7 (4), 71–79. doi: http://doi.org/10.15407/biotech7.04.071
Vasyliev, R. G., Gubar, O. S., Gordiienko, I. M., Litvinova, L. S., Rodnichenko, A. E., Shupletsova, V. V. et.al. (2019). Comparative Analysis of Biological Properties of Large-Scale Expanded Adult Neural Crest-Derived Stem Cells Isolated from Human Hair Follicle and Skin Dermis. Stem Cells International, 2019, 1–20. doi: http://doi.org/10.1155/2019/9640790
Ding, S., Kumar, S., Mok, P. (2017). Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases. International Journal of Molecular Sciences, 18 (8), 1406. doi: http://doi.org/10.3390/ijms18081406
Dang, Y., Zhang, C., Zhu, Y. (2015). Stem cell therapies for age-related macular degeneration: the past, present, and future. Clinical Interventions in Aging, 10, 255–264. doi: http://doi.org/10.2147/cia.s73705
Johnson, T. V., Bull, N. D., Hunt, D. P., Marina, N., Tomarev, S. I., Martin, K. R. (2010). Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma. Investigative Opthalmology & Visual Science, 51 (4), 2051–2059. doi: http://doi.org/10.1167/iovs.09-4509
DOI: http://dx.doi.org/10.21303/2504-5679.2020.001187
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Sergiy Rykov, Oksana Petrenko, Antonina Yakovets, Dmytro Zubov, Roman Vasyliev

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2504-5679 (Online), ISSN 2504-5660 (Print)