Dmitro Atanasov


The aim of the research is to determine morphological changes in the area of implantation of the polypropylene mesh implant and to determine the effect on the integration of the prosthesis of locally introduced adipose tissue and platelet rich plasma.

Materials and methods. The experiment was performed on 36 sexually mature males of the Wistar line rats. The experiment simulated, studied and quantified local morphological responses and changes in developing in biological tissues that are in contact with implanted highly porous lightweight (80 g/m2) mesh implant in isolation and also in conditions of local administration of fatty graft and platelet rich plasma.

Results: Assuming introduction of adipose tissue and platelet rich plasma in the zone of integration of mesh alloprosthesis under the influence of introduced regenerative cytokines as well as stromal stem cells activated by them there is an earlier activation of regenerative processes, enhanced angiogenesis which determines the optimal nature of the integration of the prosthesis with the formation of thin collagen fibers in more early terms minimizing excess peri-prosthetic fibrosis. Isolated introduction into the implantation zone of fatty suspension determines similar changes that have a slightly less pronounced character. These changes are quantitatively studied and the results obtained are statistically significant.

Conclusions: Applying a fatty graft together with platelet rich plasma in the area of implantation of the lung polypropylene prosthesis, there was an accelerated tissue reaction from the integration of the prosthesis.

Mesenchymal stem cells of adipose tissue that is a target for plasma cytokines enriched with thrombocytes have a more pronounced effect in stimulating reparative processes provided that they are simultaneously administered with PRP compared with isolated administration without PRP. The use of platelet rich plasma and adipose tissue design has a significant positive effect on local angiogenesis. Under conditions of improved angiogenesis and other stimulating factors in the conditions of introduction of adipose tissue and PRP, the integration of the prosthesis occurs with significantly lower peri-prosthetic fibrosis.


platelet rich plasma; fatty graft; regenerative cytokines; multipotent stem cells; polypropylene mesh allograft

Full Text:



Le Huu Nho, R., Mege, D., Ouaissi, M., Sielezneff, I., Sastre, B. (2012). Incidence and prevention of ventral incisional hernia. Journal of Visceral Surgery, 149 (5), 3–14. doi:

Ghazi, B., Deigni, O., Yezhelyev, M., Losken, A. (2011). Current Options in the Management of Complex Abdominal Wall Defects. Annals of Plastic Surgery, 66 (5), 488–492. doi:

Chetvericov, S., Vododyuk, V., Syvokonyuk, O. et. al. (2009). Porivnialna characteristic tkanninnoi reaktsii na implantaciu polipropilenovich ta compozitnich allotransplantativ. Actualni problemy suchastnoi chirurgiy, 9 (1), 399–401.

Amid, P. K. (1997). Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia, 1 (1), 15–21. doi:

Robinson, T. N., Clarke, J. H., Schoen, J., Walsh, M. D. (2005). Major mesh-related complications following hernia repair. Surgical Endoscopy, 19 (12), 1556–1560. doi:

Leber, G. E., Garb, J. L., Alexander, A. I., Reed, W. P. (1998). Long-term complications associated with prosthetic repair of incisional hernias. Archives of Surgery, 133 (4), 378–382. doi:

Dohan Ehrenfest, M. D., Bielecki, T., Jimbo, R., Barbe, G., Del Corso, M., Inchingolo, F., Sammartino, G. (2012). Do the Fibrin Architecture and Leukocyte Content Influence the Growth Factor Release of Platelet Concentrates? An Evidence-based Answer Comparing a Pure Platelet-Rich Plasma (P-PRP) Gel and a Leukocyte- and Platelet-Rich Fibrin (L-PRF). Current Pharmaceutical Biotechnology, 13 (7), 1145–1152. doi:

Murphy, M. B., Blashki, D., Buchanan, R. M., Yazdi, I. K., Ferrari, M., Simmons, P. J., Tasciotti, E. (2012). Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 33 (21), 5308–5316. doi:

Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., Rodeo, S. A. (2009). Platelet-rich plasma from basic science to clinical applications. The American Journal of Sports Medicine, 37 (11), 2259–2272. doi:

Eppley, B. L., Pietrzak, W. S., Blanton, M. (2006). Platelet-Rich Plasma: A Review of Biology and Applications in Plastic Surgery. Plastic and Reconstructive Surgery, 118 (6), 147e–159e. doi:

Visser, L. C., Arnoczky, S. P., Caballero, O., Kern, A., Ratcliffe, A., Gardner, K. L. (2010). Growth Factor-Rich Plasma Increases Tendon Cell Proliferation and Matrix Synthesis on a Synthetic Scaffold: An In Vitro Study. Tissue Engineering Part A, 16 (3), 1021–1029. doi:

Alsousou, J., Ali, A., Willett, K., Harrison, P. (2012). The role of platelet-rich plasma in tissue regeneration. Platelets, 24 (3), 173–182. doi:

Anitua, E., Andia, I., Ardanza, B., Nurden, P., Nurden, A. T. (2004). Autologous platelets as a source of proteins for healing and tissue regeneration. Thrombosis and Haemostasis. doi:

Cervelli, V., Gentile, P., Scioli, M. G., Grimaldi, M., Casciani, C. U., Spagnoli, L. G., Orlandi, A. (2009). Application of Platelet-Rich Plasma in Plastic Surgery: Clinical and In Vitro Evaluation. Tissue Engineering Part C: Methods, 15 (4), 625–634. doi:

Liao, H.-T., Marra, K. G., Rubin, J. P. (2014). Application of Platelet-Rich Plasma and Platelet-Rich Fibrin in Fat Grafting: Basic Science and Literature Review. Tissue Engineering Part B: Reviews, 20 (4), 267–276. doi:

Dubinina, V., Sazhiyenko, V., Lukianchuk, O., Chetvericov, S. (2011). Pat. No. 66402 UA. Sposib obrobki zhirovoi tkanini dlya podalshogo vicoristannya ii iak autotransplantatu. МPK A61B 17/00. No. u201114126; declareted: 30.11.2011; published: 26.12.2011; Bul. No. 24.

Fernandez-Moure, J. S., Van Eps, J. L., Menn, Z. K., Cabrera, F. J., Tasciotti, E., Weiner, B. K., Ellsworth, W. A. (2015). Platelet rich plasma enhances tissue incorporation of biologic mesh. Journal of Surgical Research, 199 (2), 412–419. doi:

Marx, R. E. (2001). Platelet-Rich Plasma (PRP): What Is PRP and What Is Not PRP? Implant Dentistry, 10 (4), 225–228. doi:

Zaporoshan, V., Cepkolenko, V. et. al. (2011). Osobennosti angiogeneza pri primenenii obogaschennoy trombocitami plazmi. Chirurgiya Ukraini, 3, 41–46.

Dubay, D. A., Wang, X., Kuhn, M. A., Robson, M. C., Franz, M. G. (2004). The Prevention of Incisional Hernia Formation Using a Delayed-Release Polymer of Basic Fibroblast Growth Factor. Annals of Surgery, 240 (1), 179–186. doi:

Van Eps, J., Fernandez-Moure, J., Cabrera, F., Wang, X., Karim, A., Corradetti, B. et. al. (2015). Decreased hernia recurrence using autologous platelet-rich plasma (PRP) with Strattice™ mesh in a rodent ventral hernia model. Surgical Endoscopy, 30 (8), 3239–3249. doi:

Ávila, O. R., Parizzi, N. G., Souza, A. P. M., Botini, D. S., Alves, J. Y., Almeida, S. H. M. (2016). Histological response to platelet-rich plasma added to polypropylene mesh implemented in rabbits. International Braz j Urol, 42 (5), 993–998. doi:



  • There are currently no refbacks.

Copyright (c) 2018 Dmitro Atanasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5679 (Online), ISSN 2504-5660 (Print)