PROSPECTIVE BIOLOGICAL ACTIVE COMPOUNDS AMONG 7-SUBSTITUTED OF 3-BENZYL-8-PROPYLXANTHINES FOR TREATMENT OF METABOLIC SYNDROME PATHOLOGIES

Yevgen Mykhalchenko, Kateryna Aleksandrova, Oleksandr Shkoda, Yevgen Pruglo

Abstract


Aim – the search for biologically active compounds with diuretic and hypoglycemic action among 7-substituted of 3-benzyl-8-propylxanthines, which can be used for the treatment of pathologies of “metabolic syndrome”.

Materials and methods. 30 new chemical compounds among derivatives of 7-substituted of 3-benzyl-8-propylxanthines by PASS prediction filter were chosen for diuretic and hypoglycemic activity researches. Diuretic, hypoglycemic activity and for the most active compounds – the acute toxicity were studied in vivo. The molecular docking, which is based on EADock DSS mechanism of the modulation displayed the interaction between some of functional groups inside discovered xanthine ligands and known receptors and enzymes presented in Ligand-protein Database of Swiss Institute of Bioinformatics.

Results. It has been shown that synthesized compounds displayed strong diuretic and medium hypoglycemic activities. The molecular docking modulation (SwissDock) of interaction of xanthine derivatives hits with proposed receptors and enzymes revealed prospective of using 7-substituted of 3-benzyl-8-propylxanthines as potential drugs for treatment of metabolic syndrome pathologies.

Conclusion. The diuretic activity of the new 23 compounds of 7-substituted of 3-benzyl-8-propylxanthines and hypoglycemic activity of the new 7 derivatives of 7-substituted of 3-benzyl-8-propylxanthines was studied. Results of performed investigation illustrate that 7-substituted of 3-benzyl-8-propylxanthines demonstrate biological activity comparable to standard drugs. We also proposed probable molecular targets for the most active compounds by molecular docking method. It was shown that derivatives of 7-substituted of 3-benzyl-8-propylxanthines can be used for metabolic syndrome disorders prevention.


Keywords


metabolic syndrome; xanthines; diuretic activity; hypoglycaemic activity

Full Text:

PDF

References


Gharipour, M., Sadeghi, M., Hosseini, M., Andalib, E., Boroujeni, M. B., Sarrafzadegan, N. (2015) Effect of age on the phenotype of metabolic syndrome in developing country. Adv Biomed Res., 4, 103.

Grundy, S. M. (2016). Overnutrition, ectopic lipid and the metabolic syndrome. Journal of Investigative Medicine, 64 (6), 1082–1086. doi: http://doi.org/10.1136/jim-2016-000155

Saklayen, M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20 (2). doi: http://doi.org/10.1007/s11906-018-0812-z

National Diabetes Statistics Report (2017). Available at: http://dev.diabetes.org/sites/default/files/2019-06/cdc-statistics-report-2017.pdf

Clearfield, M., Pearce, M., Nibbe, Y., Crotty, D., Wagner, A. (2013). The “New Deadly Quartet” for Cardiovascular Disease in the 21st Century: Obesity, Metabolic Syndrome, Inflammation and Climate Change: How Does Statin Therapy Fit into this Equation? Current Atherosclerosis Reports, 16 (1). doi: http://doi.org/10.1007/s11883-013-0380-2

Vitaku, E., Smith, D. T., Njardarson, J. T. (2014). Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. Journal of Medicinal Chemistry, 57 (24), 10257–10274. doi: http://doi.org/10.1021/jm501100b

Levich, S., Aleksandrova, K., Belenichev, I., Shkoda, A. (2013). Cerebroprotective activity of 3-benzylxanthine derivative – compound Ale-15, in conditions of bilateral common carotid arteries ligation (ischemic stroke). International Journal of Basic & Clinical Pharmacology, 2 (6), 705–710. doi: http://doi.org/10.5455/2319-2003.ijbcp20131207

Aleksandrova, K. V., Belenichev, I. F., Shkoda, O. S. (2016). Influence of 3-methylxanthine derivative on the morphological and functional characteristics of neurons of sensorimotor cortex of rats with experimental intracerebral hemorrhage. Journal of cerebral blood flow and metabolism, 36, 787.

Mikhal’chenko, E. K., Аleksandrova, K. V., Levich, S. V., Korzhova, A. S. (2017). Synthesis and physical-chemical properties of functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid. Current Issues in Pharmacy and Medicine: Science and Practice, 10 (2), 141–146. doi: http://doi.org/10.14739/2409-2932.2017.2.103521

Aleksandrova, K. V., Mykhalchenko, Ye. K., Pruhlo, Ye. S., Sinchenko, D. M. (2018). Pat. No. 128510 UA. Hidrazyd 3-benzyl-8-propilksantyn-7-il atsetatnoi kysloty, yakyi vyiavliaie diuretychnu diiu. MPK: S07D 473/00. No u201802221 declareted: 05.03.2018; published: 25.09.2018, Bul. No. 18

Directive 2010/63/EU of the European Parliament and of the Council. (2016). Official Journal of the European Union.

Berkhin, Ye. B. (1977). Metody izucheniya deistviya novykh khimicheskikh soyedineniy na funkciyu pochek. Khimiko-farmatsevtychnyi zhurnal, 11 (5), 3–11.

Devi, K., Khanam, S., Rabbani, S. (2010). Protective role of glibenclamide against nicotinamide-streptozotocin induced nuclear damage in diabetic Wistar rats. Journal of Pharmacology and Pharmacotherapeutics, 1 (1), 18–23. doi: http://doi.org/10.4103/0976-500x.64531

Grosdidier, A., Zoete, V., Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39, 270–277. doi: http://doi.org/10.1093/nar/gkr366

Grosdidier, A., Zoete, V., Michielin, O. (2011). Fast docking using the CHARMM force field with EADock DSS. Journal of Computational Chemistry, 32 (10), 2149–2159. doi: http://doi.org/10.1002/jcc.21797

Klei, H. E. (2013). Crystal structure of dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2) (DPP-IV-WT) complex with bms-767778 AKA 2-(3-(aminomethyl)-4-(2,4- dichlorophenyl)-2-methyl-5-oxo-5,7-dihydro-6h-pyrrolo[3,4- b]pyridin-6-yl)-n,n-dimethylacetamide. doi: http://doi.org/10.2210/pdb4jh0/pdb

Loenze, P., Schimanski-Breves, S., Engel, C. K. (2012). Crystal Structure of 11beta-Hydroxysteroid Dehydrogenase 1 (11b-HSD1) in Complex with Urea Inhibitor. doi: http://doi.org/10.2210/pdb3qqp/pdb

Mueller, J. J., Schupp, M., Unger, T., Kintscher, U., Heinemann, U. (2011). Ligand binding domain of human ppar-gamma in complex with the agonist pioglitazone. doi: http://doi.org/10.2210/pdb2xkw/pdb

Cheng, R. K. Y., Segala, E., Robertson, N., Deflorian, F., Dore, A. S., Errey, J. C. et. al. (2017). Crystal structure of stabilized A1 receptor in complex with PSB36 at 3.3A resolution. doi: http://doi.org/10.2210/pdb5n2s/pdb

Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S., Morimoto, C. (1993). Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science, 261 (5120), 466–469. doi: http://doi.org/10.1126/science.8101391

Marathe, C. S., Rayner, C. K., Jones, K. L., Horowitz, M. (2013). Glucagon-like peptides 1 and 2 in health and disease: A review. Peptides, 44, 75–86. doi: http://doi.org/10.1016/j.peptides.2013.01.014

Meier, J. J., Nauck, M. A. (2005). Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes/Metabolism Research and Reviews, 21 (2), 91–117. doi: http://doi.org/10.1002/dmrr.538

Hoehn, K., Marieb, E. N. (2010). Human Anatomy & Physiology. San Francisco: Benjamin Cummings.

Michalik, L., Auwerx, J., Berger, J. P., Chatterjee, V. K., Glass, C. K., Gonzalez, F. J. et. al. (2006). International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 58 (4), 726–741. doi: http://doi.org/10.1124/pr.58.4.5

The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. (2002). Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs Diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA: The Journal of the American Medical Association, 288 (23), 2981–2997. doi: http://doi.org/10.1001/jama.288.23.2981

Singh, N., Shreshtha, A. K., Thakur, M. S., Patra, S. (2018). Xanthine scaffold: scope and potential in drug development. Heliyon, 4 (10), e00829. doi: http://doi.org/10.1016/j.heliyon.2018.e00829




DOI: http://dx.doi.org/10.21303/2504-5679.2019.00988

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Евгений Константинович Михальченко

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5679 (Online), ISSN 2504-5660 (Print)