Fig. 1. The influence of metal ions on arginase activity

Fig. 2. The dependence of enzymatic activity on the concentration of Mn$^{2+}$ and conditions of reconstruction: a – pH 7.5, 30 min, 37 °C; b – pH 9.5, 10 min, 56 °C

Fig. 3. Principal scheme of Mn$^{2+}$ assay by the bi-enzyme PANi-Nafion/Pt electrode. PANi$^+$ and PANi0 – oxidized and reduced forms of PANi, respectively; RSO$_3^-$ – a skeleton of Nafion.
Fig. 4. Structure and thickness of the PANi film on the Pt electrode characterized with AFM. A – micrograph, resonance frequency – 160 kHz, scan rate of 1 Hz/s and resolution of 256×256 pixels. B – the Gaussian distribution by size.

Fig. 5. Amperometric response on Mn$^{2+}$ of the developed bi-enzyme PANi-Nafion/Pt electrode: chronoamperogramm (a) and calibration curve (b). Conditions: –200 mV vs Ag/AgCl electrode, pH 10.5 at 22 °C.