ANTIBACTERIAL ACTIVITY OF FOMITOPSIS BETULINA CULTURAL LIQUID

Tetiana Krupodorova, Victor Barshteyn, Elena Pokas

Abstract


The antibacterial activity of Fomitopsis betulina cultural liquid (native, native concentrated, lyophilized, dried) against standard bacteria (Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Staphylococcus aureus АТСС 25923), and clinical isolates (Acinetobacter baumannii 50/1496 MBL, A. baumannii 88/2995 MBL, E. coli 116/3196 KPC, Klebsiella pneumoniae 6/509 ESBL, AmpC, KPC, P. aeruginosa 99/3066 MBL, P. aeruginosa 125/3343 MBL, S. haemoliticus 22/824 MRSA, S. aureus 134/3569 MRCNS) has been evaluated by the serial dilutions method. The antibacterial activity of F. betulina against S. haemoliticus and A. baumannii has been found for the first time. All samples of F. betulina cultural liquid demonstrated the inhibitory effect against standard bacterial strains at the minimum bactericidal concentration (MBC) ranging from >2.0 up to 18.75 mg/ml, and against multidrug-resistant clinical isolates with MBC from 7.8 up to 48.42 mg/ml. The dried F. betulina cultural liquid showed the highest antimicrobial activity against standard bacteria and clinical isolates, except A. baumannii 50/1496 MBL, while native concentrated cultural liquid was the most effective against this pathogen. The study showed that the antibacterial activity of the cultural liquid of F. betulina was improved by concentration and drying. The results obtained indicate that F. betulina cultural liquid contains alternative antimicrobial agents, useful for the treatment of bacterial diseases and might be a perspective substance for the pharmaceutical industries

Keywords


Antibacterial activity; Fomitopsis betulina; cultural liquid; standard bacteria; multidrug-resistant clinical isolates

Full Text:

PDF

References


Pleszczyńska, M., Lemieszek, M. K., Siwulski, M., Wiater, A., Rzeski, W., Szczodrak, J. (2017). Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World Journal of Microbiology and Biotechnology, 33 (5). doi: https://doi.org/10.1007/s11274-017-2247-0

Utzig, J. Fertig, S. (1957). Influence of polyporenic acids on the growth of the bacterium of Brucella. Medycyna Weterynaryjna, 5, 268–269.

Kandefer-Szerszeń, M., Kaczor, J,. Kawecki, Z. (1981). Fungal extracts as source of antiviral substances. II. Application of the chromatography methods for the isolation of antiviral substances from Piptoporus betulinus (Bull. Ex Fr.). Annales UMCS, XXXVI (1), 1–20.

Kandefer-Szerszeń, M., Kawecki, Z. (1974). Ether extracts from the fruiting body of Piptoporus betulinus as interference inducers. Acta microbiologica Polonica. Ser. A., 6 (2), 197–200.

Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T.et. al. (2000). Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek, 78 (2), 129–140. doi: http://doi.org/10.1023/A:1026552024021

Schlegel, B., Luhmann, U., Härtl, A., Gräfe, U. (2000). Piptamine, a New Antibiotic Produced by Piptoporus betulinus Lu 9-1. The Journal of Antibiotics, 53 (9), 973–974. doi: https://doi.org/10.7164/antibiotics.53.973

Keller, C., Maillard, M., Keller, J., Hostettmann, K. (2002). Screening of European Fungi for Antibacterial, Antifungal, Larvicidal, Molluscicidal, Antioxidant and Free-Radical Scavenging Activities and Subsequent Isolation of Bioactive Compounds. Pharmaceutical Biology, 40 (7), 518–525. doi: https://doi.org/10.1076/phbi.40.7.518.14680

Tsvetkova, I., Naydenski, H., Petrova, A., Kostadinova, E., Gyosheva, M., Georgieva, P. et. al. (2006). Antibacterial Activity of Some Bulgarian Higher Basidiomycetes Mushrooms. International Journal of Medicinal Mushrooms, 8 (1), 63–66. doi: https://doi.org/10.1615/intjmedmushr.v8.i1.80

Karaman, M., Mimica-Dukic, N., Knezevic, P., Svircev, Z., Matavuly, M. (2009). Antibacterial Properties of Selected Lignicolous Mushrooms and Fungi from Northern Serbia. International Journal of Medicinal Mushrooms, 11 (3), 269–279. doi: https://doi.org/10.1615/intjmedmushr.v11.i3.60

United States Patent Application Publication US 20090130138 A1. Antiviral and antibacterial activity from medicinal mushrooms. Available at: https://patents.justia.com/patent/20090130138

Vunduk, J., Klaus, A., Kozarski, M., Petrovic, P., Zizak, Z., Niksic, M., Van Griensven, L. J. L. D. (2015). Did the Iceman Know Better? Screening of the Medicinal Properties of the Birch Polypore Medicinal Mushroom, Piptoporus betulinus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 17 (12), 1113–1125. doi: https://doi.org/10.1615/intjmedmushrooms.v17.i12.10

Dresch, P., D´Aguanno, M. N., Rosam, K., Grienke, U., Rollinger, J. M., Peintner, U. (2015). Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. AMB Express, 5 (1). doi: https://doi.org/10.1186/s13568-014-0093-0

Alresly, Z., Lindequist, U., Lalk, M., Porzel, A., Arnold, N., Wessjohann, L. A. (2016). Bioactive triterpenes from the fungus Piptoporus betulinus. Records of Natural Products, 10 (1), 103–108.

Bisko, N. A., Lomberg, M. L., Mytropolska, N. Yu., Mykchaylova O. B. (2016). The IBK Mushroom Culture Collection. Kyiv: Alterpres, 120.

Krupodorova, T., Barshteyn, V., Kizitska, T., Kvasko, H., Andriiash, H., Tigunova, O. (2018). Effect of ultraviolet C irradiation on growth and antibacterial activity of Fomitopsis betulina (Bull.) B.K. Cui, M.L. Han and Y.C. Dai. GSC Biological and Pharmaceutical Sciences, 4 (3), 001–006. doi: https://doi.org/10.30574/gscbps.2018.4.3.0073

MV 9.9.5-143-2007. Viznachennya chutlivosti mikroorganizmiv do antibakterialnih preparativ (2007). Ministry of Health of Ukraine. Kyiv, 74.

Janeš, D., Kreft, S., Jurc, M., Seme, K., Štrukelj, B. (2007). Antibacterial Activity in Higher Fungi (Mushrooms) and Endophytic Fungi from Slovenia. Pharmaceutical Biology, 45 (9), 700–706. doi: https://doi.org/10.1080/13880200701575189

Kalu, A., Kenneth, O. (2017). Antimicrobial Activity of Pleurotus squarrosulus on Clinical Pathogenic Bacteria and Fungi. Journal of Advances in Microbiology, 4 (3), 1–9. doi: https://doi.org/10.9734/jamb/2017/34644

Kozarski, M., Klaus, A., Vunduk, J., Zizak, Z., Niksic, M., Jakovljevic, D. et. al. (2015). Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus cibarius (Fries): primary mechanisms. Food & Function, 6 (6), 1875–1886. doi: https://doi.org/10.1039/c5fo00312a

Matijašević, D., Pantić, M., Rašković, B., Pavlović, V., Duvnjak, D., Sknepnek, A., Nikšić, M. (2016). The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidis. Frontiers in Microbiology, 7. doi: https://doi.org/10.3389/fmicb.2016.01226

Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R., Malm, A. (2015). Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLOS ONE, 10 (10), e0140355. doi: https://doi.org/10.1371/journal.pone.0140355

Xiao, J.-H., Xiao, D.-M., Sun, Z.-H., Xiong, Q., Liang, Z.-Q., Zhong, J.-J. (2009). Chemical compositions and antimicrobial property of three edible and medicinal Cordyceps species. Journal of Food, Agriculture & Environment, 7 (3&4), 91–100.

Yamaç, M., Bilgili, F. (2006). Antimicrobial Activities of Fruit Bodies and/or Mycelial Cultures of Some Mushroom Isolates. Pharmaceutical Biology, 44 (9), 660–667. doi: https://doi.org/10.1080/13880200601006897




DOI: http://dx.doi.org/10.21303/2504-5695.2019.001066

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Tetiana Krupodorova, Victor Barshteyn, Elena Pokas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)