CYTOLOGICAL CHARACTERISTICS OF POSTOPERATIVE METASTASES OF PAPILLARY THYROID CANCER DURING THE DEVELOPMENT OF SECONDARY RADIOIODINE REFRACTORINESS

Anna Zelinskaya, Andrey Kvachenyuk, Galina Kulinichenko, Victoria Moroz

Abstract


Radioiodine refractoriness is the main problem in the diagnosis and treatment of papillary thyroid carcinoma. The aim of the study was to investigate the cytological and immunocytochemical changes of thyrocytes in fine-needle aspiration smears of thyroid papillary cancer metastases in the course of the development of secondary radioiodine resistance. A total of 70 postoperative metastases of thyroid papillary cancer (secondary radioiodine refractory metastases, previously responsive to radioiodine, that eventually loses the ability to radioiodine accumulation, radioiodine-avid metastases, primary radioiodine-refractory metastases), immunohistochemical staining of thyroid peroxidase, thyroglobulin, cytokeratin 17 and cytological analysis were performed. Revealing the presence of specific cellular phenotypes and structures in punctuates, a low percentage of thyroid peroxidase and thyroglobulin-positive thyrocytes allows the development of the method of cytological prediction of the radioiodine therapy effectiveness.


Keywords


secondary radioiodine refractory metastases; papillary thyroid carcinoma; fine needle aspiration smears; thyroid peroxidase; thyroglobulin

Full Text:

PDF

References


Bogdanova, T. I., Zurnadzhy, L. Y., Nikiforov, Y. E., Leeman-Neill, R. J., Tronko, M. D., Chanock, S. et. al. (2015). Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 113 (11), 1556–1564. doi: https://doi.org/10.1038/bjc.2015.372

Drozd, V. M., Branovan, I., Shiglik, N., Biko, J., Reiners, C. (2018). Thyroid Cancer Induction: Nitrates as Independent Risk Factors or Risk Modulators after Radiation Exposure, with a Focus on the Chernobyl Accident. European Thyroid Journal, 7 (2), 67–74. doi: https://doi.org/10.1159/000485971

Markovina, S., Grigsby, P. W., Schwarz, J. K., DeWees, T., Moley, J. F., Siegel, B. A., Perkins, S. M. (2014). Treatment Approach, Surveillance, and Outcome of Well-Differentiated Thyroid Cancer in Childhood and Adolescence. Thyroid, 24 (7), 1121–1126. doi: https://doi.org/10.1089/thy.2013.0297

Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E. et. al. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26 (1), 1–133. doi: https://doi.org/10.1089/thy.2015.0020

Busaidy, N. L., Cabanillas, M. E. (2012). Differentiated Thyroid Cancer: Management of Patients with Radioiodine Nonresponsive Disease. Journal of Thyroid Research, 2012, 1–12. doi: https://doi.org/10.1155/2012/618985

Pacini, F., Ito, Y., Luster, M., Pitoia, F., Robinson, B., Wirth, L. (2012). Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions. Expert Review of Endocrinology & Metabolism, 7 (5), 541–554. doi: https://doi.org/10.1586/eem.12.36

Worden, F. (2014). Treatment strategies for radioactive iodine-refractory differentiated thyroid cancer. Therapeutic Advances in Medical Oncology, 6 (6), 267–279. doi: https://doi.org/10.1177/1758834014548188

Vaisman, F., Carvalho, D. P., Vaisman, M. (2015). A new appraisal of iodine refractory thyroid cancer. Endocrine-Related Cancer, 22 (6), R301–R310. doi: https://doi.org/10.1530/erc-15-0300

Deandreis, D., Al Ghuzlan, A., Leboulleux, S., Lacroix, L., Garsi, J. P., Talbot, M. et. al. (2010). Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocrine Related Cancer, 18 (1), 159–169. doi: https://doi.org/10.1677/erc-10-0233

Rivera, M., Ghossein, R. A., Schoder, H., Gomez, D., Larson, S. M., Tuttle, R. M. (2008). Histopathologic characterization of radioactive iodine‐refractory fluorodeoxyglucose‐positron emission tomography‐positive thyroid carcinoma. Cancer, 113 (1), 48–56. doi: https://doi.org/10.1002/cncr.23515

Zelinskaya, A. V. (2019). Cytokeratin 17 and thyroid peroxidase as immunocytochemical markers for reoperative prediction of radioiodine resistance and the effectiveness of radioiodine therapy of papillary thyroid carcinoma. Oncology, 21 (1), 31–35.

Pathology and Genetics of Tumours of Endocrine Organs (2004). WHO Classification of Tumours. IARC Press: Lyon, 320.

Zelinskaya, A. (2019). Immunocytochemical characteristics of thyrocytes in radioiodine refractory metastases of papillary thyroid cancer. Experimental Oncology, 41 (4). doi: https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-4.13705

Latza, U., Niedobitek, G., Schwarting, R., Nekarda, H., Stein, H. (1990). Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial. Journal of Clinical Pathology, 43 (3), 213–219. doi: https://doi.org/10.1136/jcp.43.3.213

Lastra, R. R., LiVolsi, V. A., Baloch, Z. W. (2014). Aggressive variants of follicular cell-derived thyroid carcinomas: A cytopathologist's perspective. Cancer Cytopathology, 122 (7), 484–503. doi: https://doi.org/10.1002/cncy.21417

Almendro, V., Marusyk, A., Polyak, K. (2013). Cellular Heterogeneity and Molecular Evolution in Cancer. Annual Review of Pathology: Mechanisms of Disease, 8 (1), 277–302. doi: https://doi.org/10.1146/annurev-pathol-020712-163923

Studer, H., Gerber, H., Zbaeren, J., Peter, H. J. (1992). Histomorphological and immunohistochemical evidence that human nodular goiters grow by episodic replication of multiple clusters of thyroid follicular cells. The Journal of Clinical Endocrinology & Metabolism, 75 (4), 1151–1158. doi: https://doi.org/10.1210/jcem.75.4.1400886

Wang, C., Zhang, X., Li, H., Li, X., Lin, Y. (2017). Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLOS ONE, 12 (7), e0179664. doi: https://doi.org/10.1371/journal.pone.0179664

Huang, M., Batra, R. K., Kogai, T., Lin, Y. Q., Hershman, J. M., Lichtenstein, A. et. al. (2001). Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non–small cell lung cancer. Cancer Gene Therapy, 8 (8), 612–618. doi: https://doi.org/10.1038/sj.cgt.7700354

Ricarte-Filho, J. C., Ryder, M., Chitale, D. A., Rivera, M., Heguy, A., Ladanyi, M. et. al. (2009). Mutational Profile of Advanced Primary and Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenetic Roles for BRAF, PIK3CA, and AKT1. Cancer Research, 69(11), 4885–4893. doi: https://doi.org/10.1158/0008-5472.can-09-0727

Liu, Y. Y., Stokkel, M. P., Pereira, A. M., Corssmit, E. P., Morreau, H. A., Romijn, J. A., Smit, J. W. A. (2006). Bexarotene increases uptake of radioiodide in metastases of differentiated thyroid carcinoma. European Journal of Endocrinology, 154 (4), 525–531. doi: https://doi.org/10.1530/eje.1.02123

Furuya, F., Shimura, H., Suzuki, H., Taki, K., Ohta, K., Haraguchi, K. et. al. (2004). Histone Deacetylase Inhibitors Restore Radioiodide Uptake and Retention in Poorly Differentiated and Anaplastic Thyroid Cancer Cells by Expression of the Sodium/Iodide Symporter Thyroperoxidase and Thyroglobulin. Endocrinology, 145 (6), 2865–2875. doi: https://doi.org/10.1210/en.2003-1258




DOI: http://dx.doi.org/10.21303/2504-5695.2020.001117

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Anna Zelinskaya, Andrey Kvachenyuk, Galina Kulinichenko, Victoria Moroz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)