IMPROVEMENT OF THE MODEL OF TRANSFORMATION OF NITROGEN-CONTAINING SUBSTANCES IN A WATER BODY FOR THE SOLUTION OF NATURE MANAGEMENT PROBLEM
Abstract
In the article is considered the one of aspects of nature management regulation – an account of successive transformation of pollutants in a water body, that come with waste waters of industrial, municipal and agricultural enterprises. It is necessary at the determination of permissible pollutants emission with waste waters that doesn’t allow the excess of the permissible level of substances content in the control point of a water body. This problem is considered on the example of successive transformation of nitrogen-containing substances in the following transformation order: organic nitrogen – ammonium nitrogen - nitrite nitrogen – nitrate nitrogen. The topicality of the modeling of nitrogen-containing substances is conditioned by their role in water ecosystems functioning. At that existent mathematical models of natural water quality formation that take into account substances transformation contain the large number of unknown parameters. So, the use of such models in problems of nature management regulation is problematic, because identification of model parameters is a separate very complicated scientific problem. And existent models with relatively small number of parameters don’t take into account the natural pollution of water bodies, caused by the life activity of organisms; substance losses in the transformational chain are also possible. The improved matrix mathematical model of nitrogen-containing substances transformation without the indicated shortcomings is offered.
Keywords
Full Text:
PDFReferences
Momblanch, A., Paredes-Arquiola, J., Andreu, J. (2017). Improved modelling of the freshwater provisioning ecosystem service in water scarce river basins. Environmental Modelling & Software, 94, 87–99. doi: 10.1016/j.envsoft.2017.03.033
Momblanch, A., Paredes-Arquiola, J., Munné, A., Manzano, A., Arnau, J., Andreu, J. (2015). Managing water quality under drought conditions in the Llobregat River Basin. Science of The Total Environment, 503-504, 300–318. doi: 10.1016/j.scitotenv.2014.06.069
Ayuso, R. A., Foley, N. K. (2016). Pb-Sr isotopic and geochemical constraints on sources and processes of lead contamination in well waters and soil from former fruit orchards, Pennsylvania, USA: A legacy of anthropogenic activities. Journal of Geochemical Exploration, 170, 125–147. doi: 10.1016/j.gexplo.2016.08.008
EU Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (2000). Official Journal of the European Communities, 43 (22.12), 72.
Plis, Yu. M. (1987). Otsenka kachestva troficheskih funktsiy pri modelirovanii biohimicheskoy transformatsii veschestv. Ohrana vod rechnyih basseynov, 16, 65–72.
Hvat, V. A., Lvov, V. N., Ladyizhenskiy, V. N. (1989). Spravochnik po ohrane vodnyih resursov. Kyiv: Urozhay, 176.
Morelissen, R., Kaaij, T.van der, Bleninger, T. (2011). Waste Water Discharge Modelling With Dynamically Coupled Near Field and Far Field Models. International Symposium on Outfall Systems.
Vodnyiy kodeks Ukrainyi (v redaktsii 2016). Available at: http://zakon5.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80/page
Morelissen, R., Vlijm, R., Hwang, I., Doneker, R. L., Ramachandran, A. S. (2015). Hydrodynamic modelling of large-scale cooling water outfalls with a dynamically coupled near-field–far-field modelling system. Journal of Applied Water Engineering and Research, 4 (2), 138–151. doi: 10.1080/23249676.2015.1099480
Doneker, R. L. (2006). Systems Development for Environmental Impact Assessment of Concentrate Disposal- Development of Density Current Simulation Models, Rule Base, and Graphical User Interface. DWPR Report No. 132, US Bureau of Reclamation.
Bleninger, T., Jirka, G. H. (2007). First Steps in Modeling and Design of Coastal Brine Discharges", International Desalination & Water Reuse Quarterly. International Desalination Association, 17 (2), 48–55.
Instruktsiya pro poryadok rozrobky ta zatverdzhennya hranychno-dopustymykh skydiv (HDS) rechovyn u vodni ob’yekty iz zvorotnymy vodamy (1994). Kharkiv: UkrNTsOV, 79.
Jirka, G. H. (2008). Improved Discharge Configurations for Brine Effluents from Desalination Plants. Journal of Hydraulic Engineering, 134 (1), 116–120. doi: 10.1061/(asce)0733-9429(2008)134:1(116)
Jones, G. R., Nash, J. D., Doneker, R. L., Jirka, G. H. (2007). Surface Discharges into Water Bodies. I: Flow Classification and Prediction Methodology. Journal of Hydraulic Engineering.
Hajigholizadeh, M., Melesse, A. M. (2017). Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. CATENA, 151, 247–258. doi: 10.1016/j.catena.2016.12.018
Proskurnin, O. A. (2014). Razbienie basseyna reki na lokalnyie uchastki s tselyu osuschestvleniya basseynovogo printsipa rascheta dopustimyih sbrosov stochnyih vod. Kommunalnoe hozyaystvo gorodov, 112, 82–87.
Tinta, T., Kogovšek, T., Turk, V., Shiganova, T. A., Mikaelyan, A. S., Malej, A. (2016). Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column – A Black Sea case study. Journal of Experimental Marine Biology and Ecology, 475, 19–30. doi: 10.1016/j.jembe.2015.10.018
Ma, L., He, F., Huang, T., Zhou, Q., Zhang, Y., Wu, Z. (2016). Nitrogen and phosphorus transformations and balance in a pond-ditch circulation system for rural polluted water treatment. Ecological Engineering, 94, 117–126. doi: 10.1016/j.ecoleng.2016.05.051
Boulard, T., Roy, J.-C., Pouillard, J.-B., Fatnassi, H., Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosystems Engineering, 158, 110–133. doi: 10.1016/j.biosystemseng.2017.04.001
Watanabe, A., Tamaki, N., Yokota, K., Matsuyama, M., Kokeguchi, S. (2016). Monitoring of bacterial contamination of dental unit water lines using adenosine triphosphate bioluminescence. Journal of Hospital Infection, 94 (4), 393–396. doi: 10.1016/j.jhin.2016.08.001
Menon, S., Ganti, H., Niemeyer, K. E., Hagen, C. (2017). Effects of oil and water contamination on natural gas engine combustion processes. Journal of Natural Gas Science and Engineering, 41, 30–39. doi: 10.1016/j.jngse.2017.02.038
Santos, R., Joyeux, A., Besnard, A., Blanchard, C., Halkett, C., Bony, S. et. al. (2017). An integrative approach to assess ecological risks of surface water contamination for fish populations. Environmental Pollution, 220, 588–596. doi: 10.1016/j.envpol.2016.10.007
Ashraf, J., Uddin, S. (2016). New public management, cost savings and regressive effects: A case from a less developed country. Critical Perspectives on Accounting, 41, 18–33. doi: 10.1016/j.cpa.2015.07.002
Nardi, D., Lampani, L., Pasquali, M., Gaudenzi, P. (2016). Detection of low-velocity impact-induced delaminations in composite laminates using Auto-Regressive models. Composite Structures, 151, 108–113. doi: 10.1016/j.compstruct.2016.02.005
DOI: http://dx.doi.org/10.21303/2504-5695.2017.00356
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Oleg Proskurnin, Kateryna Berezenko, Iryna Kyrpychova, Yana Honcharenko, Anatoly Jurchenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)