ESTABLISHING THE EQUIPMENT-METHODICAL SUPPORT FOR DETERMINING THE PROPERTIES OF EXTRACTS OF GRAPE POMACE EXTRACTS PRODUCED IN THE SUBCREATIVE WATER ENVIRONMENT

Valeri Sukmanov, Anatoliy Ukrainets, Volodymyr Zavialov, Andrii Marynin

Abstract


Research objective: development of a high-pressure reactor for researching the process of extraction of grape pomace by the subcritical water and determining the parameters, providing the maximum yield of various target products – biologically active substances; formation of methodological support for raw material preparation, qualitative and quantitative analysis of extracts, produced by the subcritical extraction. As a result of simulation in the ANSYS system of the stress-strain state of the walls of the reactor chamber and a set of calculation operations, a high-pressure reactor was created that meets the requirements. The formed methodical complex for determining the physicochemical properties of extracts and the content of various biologically active substances included methods for preparing samples and determining the yield of dry extractive substances, evaluation of extraction of polyphenols (tannic-catechol complex), evaluation of extraction of reducing substances, identification furfural and gallic acids, estimation of free organic acids in terms of tartaric acid, evaluation of antioxidant activity of extracts). This methodological complex allows us to estimate the physico-chemical properties of the extracted biologically active substances.


Keywords


grape pomace; biologically active substances; extraction; subcritical water; antioxidant activity

Full Text:

PDF

References


International Organization of Vine and Wine (2016). Statistical Report on World Vitiviniculture. Paris. Available at: http://www.oiv.int/public/medias/5029/world-vitiviniculture-situation-2016.pdf

Issa, G., Patti, A. F., Smernik, R., Wilkinson, K. (2009). Chemical composition of composted grape marc. Water Science & Technology, 60 (5), 1265–1271. doi: 10.2166/wst.2009.564

Wang, X., Tong, H., Chen, F., Gangemi, J. D. (2010). Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chemistry, 123 (4), 1156–1162. doi: 10.1016/j.foodchem.2010.05.080

Xia, E.-Q., Deng, G.-F., Guo, Y.-J., Li, H.-B. (2010). Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences, 11(2), 622–646. doi:10.3390/ijms11020622

Plaza, M., Turner, C. (2015). Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry, 71, 39–54. doi: 10.1016/j.trac.2015.02.022.

Zakaria, S. M., Kamal, S. M. M. (2015). Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Engineering Reviews, 8 (1), 23–34. doi: 10.1007/s12393-015-9119-x

Liang, X., Fan, Q. (2013). Application of Sub-Critical Water Extraction in Pharmaceutical Industry. Journal of Materials Science and Chemical Engineering, 1 (5), 1–6. doi: 10.4236/msce.2013.15001

Bondakova (Krivchenkova), M. V., Klyishinskaya, E. V., Butova, S. N. (2012). Sovershenstvovanie sposobov polucheniya ekstrakta vinograda s tselyu ego dalneyshego ispolzovaniya pri proizvodstve kosmeticheskih izdeliy. Novyie himiko-farmatsevticheskie tehnologii. Moscow: RHTU im. D. I. Mendeleeva, 154–157.

Rajha, H. N., Darra, N. E., Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05 (04), 397–409. doi:10.4236/fns.2014.54048

Escribano-Bailon, M., Santos-Buelga, C.; Santos-Buelga, C., Williamson, G. (Eds.) (2003). Polyphenol extraction from foods. Methods in polyphenol analysis. Cambridge: The Royal Society of Chemistry, 1–16.

Sukmanov, V. O., Petrova, Yu. M., Lahovskyi, I. O. (2015). Apparaturnoe oformlenye protsessa ekstrahyrovanyia byolohychesky aktyvnikh veshchestv yz vizhymok vynohrada v srede subkrytycheskoi vody. Aktualni problemy ta perspektyvy rozvytku kharchovykh vyrobnytstv, hotelno-restorannoho ta turystychnoho biznesu. Poltava: PUET, 276–277.

Alexandrov, A. (1998). Management system IAPWS-IF97 for calculating of thermodynamic properties of water and steam for industrial calculations. Additional equations. Fittings, 10, 64–72.

Xia, E.-Q., Deng, G.-F., Guo, Y.-J., Li, H.-B. (2010). Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences, 11 (2), 622–646. doi: 10.3390/ijms11020622

Veshnyakov, V. A., Habarov, Yu. G., Kamakina, N. D. (2008). Sravnenie metodov opredeleniya redutsiruyuschih veschestv: metod Bertrana, ebuliostaticheskiy i fotometricheskiy metodyi. Himiya rastitelnogo syirya, 4, 47–50.

Ryizhova, G. L., Matasova, S. A., Bashurov, S. G. (1997). Poluchenie suhogo ekstrakta iz plodov ryabinyi sibirskoy i izuchenie ego himicheskogo sostava. Himiya rastitelnogo syirya, 2, 37–41.

Issa, G. (Jason), Patti, A. F., Issa, G. (Jason), Smernik, R., Wilkinson, K. (2009). Chemical composition of composted grape marc. Water Science & Technology, 60 (5), 1265. doi: 10.2166/wst.2009.564




DOI: http://dx.doi.org/10.21303/2504-5695.2017.00434

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Valeri Sukmanov, Anatoliy Ukrainets, Volodymyr Zavialov, Andrii Marynin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)