ELECTRON MICROSCOPIC STUDYING OF RAT BONE CELLS UNDER MICROGRAVITY CONDITIONS

Olga Polkovenko

Abstract


In the experiments on rats (SLS-2) with the use of electron microscopy there was made the study of the osteoclasts population and the peculiarities of resorptive processes in a spongy bone of the epiphyses and the iliac crest.

The results of investigation permit to suppose that the processes of resorption of bone tissue become more intensive in zones of adaptive remodeling and destruction of the spongy bone under microgravity that is performed by several ways. One of mechanisms is the increasing of the functional activity of osteoclasts (appearance of "giant" osteoclasts). As a result it is the local demineralization and subsequent destruction of superficial areas of the bone matrix. The other mechanism is activation of osteocytic osteolysis was also investigated.


Keywords


osteoclasts; osteocytes; bone remodeling; femoral bones; microgravity; electron microscopia

Full Text:

PDF FIGURES

References


Grigoriev, A. I., Volozhin, A. I., Stupakov, G. P. (1994). Human mineral metabolism in weightlessness. Problems of space biology. Vol. 74. Moscow: "Nauka", 214.

Robey, P. G., Boskey, A. L.; Rosen, C. J. (Ed.) (2008). The composition of bone. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. American Society for Bone and Mineral Research. Washington, D.C., 32–38.

Martin, T. J., Seeman, E. (2007). New mechanisms and targets in the treatment of bone fragility. Clinical Science, 112 (2), 77–91. doi: 10.1042/cs20060046

Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M. et. al (2009). A Physical Mechanism for Coupling Bone Resorption and Formation in Adult Human Bone. The American Journal of Pathology, 174 (1), 239–247. doi: 10.2353/ajpath.2009.080627

Martin, T. J., Gooi, J. H., Sims, N. A. (2009). Molecular Mechanisms in Coupling of Bone Formation to Resorption. Critical Reviews™ in Eukaryotic Gene Expression, 19 (1), 73–88. doi: 10.1615/critreveukargeneexpr.v19.i1.40

Nagaraja, M. P., Risin, D. (2013). The current state of bone loss research: Data from spaceflight and microgravity simulators. Journal of Cellular Biochemistry, 114 (5), 1001–1008. doi: 10.1002/jcb.24454

Rodionova, N. V., Polkovenko, O. V., Oganov, V. S. (2004). The ways of resorption of mineralized bone matrix under hypokinesia and microgravity. Paris, France, 716.

Oganov, V. S. (2008). Hipokinesia – the factor of risk of osteoporosis. Osteoporosis and Osteopatie, 1, 13–17.

Durnova, G. N., Ilyina-Kakueva, E. I., Morey-Holton, E. et. al (1994). Histomorphometric analysis of rat bones after the spaceflight aboard the SLS-2. Space Biiology and Aviaspace Medicine, 28 (1), 18–20.

Vico, L., Bourrin, S., Genty, C., Palle, S., Alexandre, C. (1985). Histomorphometric analyses of cancellous bone from COSMOS 2044 rats. J Appl Physiol Nov., 75 (5), 2203–2208.

Arfat, Y., Xiao, W.-Z., Iftikhar, S., Zhao, F., Li, D.-J., Sun, Y.-L. et. al (2014). Physiological Effects of Microgravity on Bone Cells. Calcified Tissue Internationa, 94 (6), 569–579. doi: 10.1007/s00223-014-9851-x

Andersen, T. L., Søe, K., Sondergaard, T. E., Plesner, T., Delaisse, J.-M. (2010). Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. British Journal of Haematology, 148 (4), 551–561. doi: 10.1111/j.1365-2141.2009.07980.x

Rodionova, N. V., Oganov, V. S. (1997). Cytological mechanism of the osteogenesis under microgravity conditions. Washington, DC, 277–278.

Bronckers, A. L. J. J., Goei, S. W., Luo, G., Karsenty, G., Burger, E. H. (2001). Mechanotransduс-countermeasures. Bioastronautics Investigatorsí Workshop. USRA, Houston, 74.

Di, S., Meng, R., Qian, A., Tian, Z., Li, J., Zhang, R., Shang, P. (2012). Impact of osteoclast precursors subjected to random positioning machine on osteoblasts. Journal of Mechanics in Medicine and Biology, 12 (04), 1250074. doi: 10.1142/s0219519412005083

Di, S., Tian, Z., Qian, A., Li, J., Wu, J., Wang, Z. et. al (2012). Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. International Journal of Radiation Biology, 88 (11), 806–813. doi: 10.3109/09553002.2012.698365

Wang, Y., Grainger, D. W. (2012). RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Advanced Drug Delivery Reviews, 64 (12), 1341–1357. doi: 10.1016/j.addr.2011.09.002

Nabavi, N., Khandani, A., Camirand, A., Harrison, R. E. (2011). Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone, 49 (5), 965–974. doi: 10.1016/j.bone.2011.07.036

Di, S. M., Qian, A. R., Qu, L. N., Zhang, W., Wang, Z., Ding, C. et. al (2011). Graviresponses of osteocytes under altered gravity. Advances in Space Research, 48 (6), 1161–1166. doi: 10.1016/j.asr.2011.05.030

Rodionova, N. V., Oganov,V. S., Polkovenko, O. V. (2002). Mechanism of gravity-dependent changes in the bone tissue. Stokholm, Sweden, 73–74.

Bloomfield, S. A. (2006). Does altered blood flow to bone in microgravity impact on mechanotransduction? J Musculoskelet Neuronal Interact, 6 (4), 324–326.




DOI: http://dx.doi.org/10.21303/2504-5695.2016.00048

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Olga Polkovenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)