ARGINASE-BASED AMPEROMETRIC BIOSENSOR FOR MANGANESE IONS ANALYSIS

Nataliya Stasyuk, Mariya Synenka, Galina Gayda, Oleh Smutok, Mykhailo Gonchar

Abstract


The development of simple cost-effective sensitive enzymatic methods for analysis of toxic metallic ions is an actual problem. Promising tools for elaboration of such methods are Mn2+-dependent enzymes. A novel manganese(II)-sensitive amperometric bi-enzyme biosensor based on of recombinant human arginase I (arginase) isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer with urease and apo-enzyme of arginase was placed onto a polyaniline-Nafion composite platinum electrode. The developed sensor revealed a high sensitivity to Mn2+-ions – 9200±20 A/(M∙m2)with the apparent Michaelis-Menten constant derived from Mn2+-ions calibration curve of 11.5±1.0 µM. A linear concentration range was observed from 1 µM to 6,5 µM MnCl2, a limit of detection being of 0.15 µM and a response time – 2.5 min. The proposed biosensor may be useful to monitor manganese compounds in laboratories of medicine, food industry and environmental control service.


Keywords


Amperometric biosensor; manganese(II) ion; polyaniline; arginase I; urease

Full Text:

PDF FIGURES

References


Williams, R. J. P. (2007). Systems biology of evolution: the involvement of metal ions. BioMetals, 20 (2), 107–112. doi: 10.1007/s10534-007-9087-6

Salomon, E., Keren, N., Kanteev, M., Adir, N. (2011). Manganese in Biological Systems: Transport and Function. PATAI’S Chemistry of Functional Groups. doi: 10.1002/9780470682531.pat0540

Lin, C.-C., Chen, Y.-C., Su, F.-C., Lin, C.-M., Liao, H.-F., Hwang, Y.-H. et. al (2013). In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environmental Research, 123, 52–57. doi: 10.1016/j.envres.2013.03.003

Gunier, R. B., Arora, M., Jerrett, M., Bradman, A., Harley, K. G., Mora, A. M. et. al (2015). Manganese in teeth and neurodevelopment in young Mexican–American children. Environmental Research, 142, 688–695. doi: 10.1016/j.envres.2015.09.003

Rodríguez-Barranco, M., Lacasaña, M., Aguilar-Garduño, C., Alguacil, J., Gil, F., González-Alzaga, B., Rojas-García, A. (2013). Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Science of The Total Environment, 454-455, 562–577. doi: 10.1016/j.scitotenv.2013.03.047

Sanders, A. P., Claus Henn, B., Wright, R. O. (2015). Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Current Environmental Health Reports, 2 (3), 284–294. doi: 10.1007/s40572-015-0058-8

Erikson, K. M., Thompson, K., Aschner, J., Aschner, M. (2007). Manganese neurotoxicity: A focus on the neonate. Pharmacology & Therapeutics, 113 (2), 369–377. doi: 10.1016/j.pharmthera.2006.09.002

Santos, D., Batoreu, M. C., Almeida, I., Ramos, R., Sidoryk-Wegrzynowicz, M., Aschner, M., Marreilha dos Santos, A. P. (2012). Manganese Alters Rat Brain Amino Acids Levels. Biological Trace Element Research, 150 (1-3), 337–341. doi: 10.1007/s12011-012-9504-8

Avila, D. S., Puntel, R. L., Aschner, M. (2013). Manganese in Health and Disease. Interrelations Between Essential Metal Ions and Human Diseases, 199–227. doi: 10.1007/978-94-007-7500-8_7

Rahbar, M. H., Samms-Vaughan, M., Dickerson, A. S., Loveland, K. A., Ardjomand-Hessabi, M., Bressler, J. et. al (2014). Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ Health, 13 (1), 69. doi: 10.1186/1476-069x-13-69

Rahbar, M. H., Samms-Vaughan, M., Ma, J., Bressler, J., Dickerson, A. S., Hessabi, M. et. al (2015). Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder. Research in Autism Spectrum Disorders, 18, 73–82. doi: 10.1016/j.rasd.2015.08.001

Balogh, I. S., Rusnáková, L., Škrlíková, J., Kocúrová, L., Török, M., Andruch, V. (2012). A spectrophotometric method for manganese determination in water samples based on ion pair formation and dispersive liquid–liquid microextraction. International Journal of Environmental Analytical Chemistry, 92 (9), 1059–1071. doi: 10.1080/03067319.2010.537750

Shokrollahi, A., Shokrollahi, N. (2014). Determination of Mn 2+ ion by solution scanometry as a new, simple and inexpensive method . Química Nova. doi: 10.5935/0100-4042.20140277

Tokalıoğlu, Ş., Yılmaz, V., Kartal, Ş. (2008). Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180. Environmental Monitoring and Assessment, 152 (1-4), 369–377. doi: 10.1007/s10661-008-0322-6

Manivannan, D., Biju, V. M. (2011). Determination of toxic heavy metals in sea water by FAAS after preconcentration with a novel chelating resin. Water Science & Technology, 64 (4), 803. doi: 10.2166/wst.2011.501

Sobhana, M., Divya, T., Anuja, E. V., Girish Kumar, K. (2013). Manganese (II) –Selective Potentiometric Sensor Based on Calix[4]resorcinarene in PVC Matrix. Frontiers in Sensors, 1 (4), 74–80. Available at: http://www.seipub.org/fs/paperInfo. aspx?ID=6828

Narayanan, K. B., Park, H. H. (2014). Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 132–137. doi: 10.1016/j.saa.2014.04.081

Ma, S.-Y., Yeh, Y.-C. (2015). One-step synthesis of water-soluble fluorescent copper nanoparticles for label-free detection of manganese ions. Anal. Methods, 7 (16), 6475–6478. doi: 10.1039/c5ay01567g

Stasyk, O. V., Boretsky, Y. R., Gonchar, M. V., Sibirny, A. A. (2014). Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biology International, 39 (3), 246–252. doi: 10.1002/cbin.10383

Gayda, G. Z., Stasyuk, N. Ye., Klepach, H. M., Gonchar, M. V. (2015). Arginase-based electrochemical sensors to L-arginine assay for prediction of ethyl carbamate formation in fermented beverages. Living Organisms and Bioanalytical Approaches for Detoxification and Monitoring of Toxic Compounds. Rzeszow, 73–98.

Stasyuk, N. Y., Gayda, G. Z., Gonchar, M. V. (2014). l-Arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors and Actuators B: Chemical, 204, 515–521. doi: 10.1016/j.snb.2014.06.112

Stasyuk, N., Smutok, O., Gayda, G., Vus, B., Koval’chuk, Y., Gonchar, M. (2012). Bi-enzyme l-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosensors and Bioelectronics, 37 (1), 46–52. doi: 10.1016/j.bios.2012.04.031

Stasyuk, N. Ye., Gayda, G. Z., Koval’chuk, Y. P., Gonchar, M. V. (2010). Human arginase I from the recombinant yeast Hansenula polymorpha: isolation and characterization. Ukr. Biochem. J., 82 (6), 14–21.




DOI: http://dx.doi.org/10.21303/2504-5695.2016.00049

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Nataliya Stasyuk, Mariya Synenka, Galina Gayda, Oleh Smutok, Mykhailo Gonchar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)