Еlizaveta Kostenko, Еlena Butenko, Larisa Arseneva


The aim of research is development of approaches to the development of schemes for microelement analysis of food objects. This will make it possible to monitor food quality by simple and affordable methods in factory laboratories.

Based on data on the immobilization of dyes on ion exchangers and on the interaction of metal ions or their complexes with immobilized dyes, solid-phase spectrophotometric (SPS) and photometric methods for determining metal ions in food technology, biotechnology and the environment have been developed.

Techniques are sensitive. High distribution coefficients (D³104 cm3/g) of metal ions help to reduce the detection limit when using immobilized dye as compared to the reaction in solution. Based on the detection limit values (DLV), the proposed sorption-spectrophotometric methods for determining metal ions are second only to the atomic absorption (AAS) determination of Cd (II) and Hg (II) ions and the polarographic determination of Cd (II) ions. However, the proposed methods for the determination of these metal ions are sufficient for the determination of Cd (II) and Hg (II) ions in food products at the MPC level. In the case of determination of Pb (II), Zn (II), Cu (II), Fe (III) ions, the developed methods have advantages over standard methods for determination of metal ions in food products, since they make it possible to determine these ions at a level ≤0.1…0.5 MPC;

Ion exchangers with immobilized dyes and solid-phase spectrophotometric determination methods with their participation are environmentally safe, since they do not require the use of toxic organic reagents; are simple in execution and economically advantageous because of the low cost of used materials and reagents.

The correctness of the results of the determination by the developed methods is proved: by comparison with the results of determinations on standard methods at various analysis objects using the method of additives, standard samples. The relative standard deviation of the developed SPS determination procedures does not exceed 0.10, which indicates satisfactory reproducibility of the results. The developed methods exceed the majority of standard and best analogs, known from the literature, for sensitivity and selectivity. The used methods of analysis are characterized by the simplicity of the experiment, ecological safety, do not require special expensive equipment, highly qualified personnel and a stationary laboratory.


spectrophotometric determination of elements. food quality control. hybrid methods of analysis

Full Text:



Yatmanova, A. A. (2015). Formirovanie kachestva pishhevykh produktov v protsesse proizvodstva. Novaya nauka: Ot idei k rezultatu, 7-1, 253.

Mikhienkova, A. I., Rosada, M. A., Surmasheva, E. V., Berezovchuk, S. M., Nikonova, N. A. (2013). Evropeyskie podkhody k otsenke bezopasnosti pishhevykh produktov po mikrobiologicheskim pokazatelyam. Gigiena i sanitariya, 5, 48–53.

Tuvatova, V. E. (2016). Kontrol' kachestva i bezopasnosti produktsii iz rybnogo syr'ya. Innovatsionnaya nauka, 6-2, 153–155.

Dubinina, A. A., Ovchynnikova, I. F., Dubinina, S. O. et. al. (2010). Metody vyznachennia falsyfikatsii tovariv. Kyiv: Profesional, 272.

Kostenko, Ye. Ye. (2011). Khimiko-analitychni vlastyvosti azobarvnykiv, immobilizovanykh na anioniti АВ-178, ta vykorystannia yikh v analizi kharchovykh obiektiv. Ukrainskyi khimichnyi zhurnal, 77 (8), 107–115.

Kostenko, Ye. Ye. (2011). Khimiko-analitychni vlastyvosti sulfoftaleinovykh barvnykiv, immobilizovanykh na anioniti АВ-178 ta yikh vykorystannia v analizi kharchovykh obiektiv. Metody ta Obiekty Khimichnoho Analizu, 6 (1-2), 56–70.

Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta Part B: Atomic Spectroscopy, 58 (7), 1177–1233. doi: 10.1016/s0584-8547(03)00072-7

Liska, I. (2000). Fifty years of solid-phase extraction in water analysis – historical development and overview. Journal of Chromatography A, 885 (1-2), 3–16. doi: 10.1016/s0021-9673(99)01144-9

Poole, C. F. (2000). Solid-Phase Extraction. Encyclopedia of Separation Science. Academic Press, 1405–1416. doi: 10.1016/b0-12-226770-2/02141-4

Rocha, F. R. P., Raimundo, I. M., Teixeira, L. S. G. (2011). Direct Solid-Phase Optical Measurements in Flow Systems: A Review. Analytical Letters, 44 (1-3), 528–559. doi: 10.1080/00032719.2010.500790

Arena, M. P., Porter, M. D., Fritz, J. S. (2002). Rapid, Specific Determination of Iodine and Iodide by Combined Solid-Phase Extraction/Diffuse Reflectance Spectroscopy. Analytical Chemistry, 74 (1), 185–190. doi: 10.1021/ac0109366

Lubbad, S., Steiner, S. A., Fritz, J. S., Buchmeiser, M. R. (2006). Metathesis polymerization-derived monolithic membranes for solid-phase extraction coupled with diffuse reflectance spectroscopy. Journal of Chromatography A, 1109 (1), 86–91. doi: 10.1016/j.chroma.2005.11.082

Sukhan, V. V., Trokhimenko, O. M., Zaitsev, V. N. (2010). Direct and indirect atomic absorption methods of determining various forms of iodine in waters and in aqueous solutions. Journal of Water Chemistry and Technology, 32 (2), 78–89. doi: 10.3103/s1063455x10020037

Trokhymenko, O. M. (2002). Fotometrychne vyznachennia fosforu (V) u vyhliadi ionnoho asotsiatu molibdofosfatu z diamantovym zelenym. Ukrainskyi khimichnyi zhurnal, 68 (6), 88–91.

Kostenko, Ye. Ye., Khrystiansen, M. H., Shtokalo, M. Y. et. al. (2009). Analitychna khimiia. Optychni ta elektrokhimichni metody analizu. Kyiv: NUKhT, 283.

Chmylenko, F. A., Baklanov, A. N. (2001). Ultrazvuk v analytycheskoi khymyy. Teoryia y praktyka. Dnepropetrovsk: RYTs Dnepropetr. un-ta, 263.

Kostenko, E. E. (2011). Viznachennya mіkroelementnogo skladu gribіv metodom tverdofaznoi spektrofotometrіi. Metody i ob"ekty khimicheskogo analiza, 6 (4), 214–223.



  • There are currently no refbacks.

Copyright (c) 2018 Еlizaveta Kostenko, Еlena Butenko, Larisa Arseneva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)