ESTABLISHMENT OF THE EFFICIENCY OF ANIMAL BREEDING PREMISES DISINFECTION BY MODERN DISINFECTANTS

Andriy Paliy, Anatoliy Paliy, Alexander Nanka, Olga Chalaya, Oleksandr Chalyi

Abstract


The technological complex of veterinary-sanitary and organization-economic arrangements, conducted for prophylaxis and fight against infectious diseases inevitably includes disinfection, directed on inactivation of pathogenic agents in the environment. At applying new disinfectants in practice in the whole structure of the technological process of animal husbandry products, it is necessary to determine their sensitivity to the circulating microflora. The aim of the study was to establish the effectiveness of using new disinfecting preparations of different chemical groups and to determine regimes of their application in the whole complex of anti-epizootic prophylactic arrangements. Disinfecting preparations “Hermicidan FF plus”, “Peroxan forte”, “Viro-xal” were used in experiments. The quality of the conducted disinfection was controlled by separation of sanitary-representative microorganisms – bacteria of the colon bacillus group. It has been established, that the disinfecting preparations “Hermicidan FF plus”, “Peroxan forte”, “Viro-xal” have bactericidal properties relative to the sanitary-representative microorganisms and can be used in the general complex of sanitary-hygienic arrangements. The disinfectant “Hermicidan FF plus” has bactericidal properties in concentration 0,5 % at exposition 1 hour, preparation “Peroxan Forte” is effective at using in concentration 1,0 % at exposition 1 hour, and the disinfecting means “Viro xal” acts bactericidially in concentration 1,0 % at exposition 3 hours. For today the question of search for new technological, high-effective disinfecting preparations that correspond to existent requirements of biological safety and protection remains urgent.

Keywords


disinfection; disinfectant; bactericidal properties; chemical groups; microorganisms

Full Text:

PDF

References


Ley, B., Silverman, E., Peery, K., Dominguez, D. (2016). Evaluation of Commonly Used Products for Disinfecting Clipper Blades in Veterinary Practices: A Pilot Study. Journal of the American Animal Hospital Association, 52 (5), 277–280. doi: http://doi.org/10.5326/jaaha-ms-6427

Palii, A. P. (2016). Innovatsiini osnovy oderzhannia vysokoiakisnoho moloka. Kharkiv: Miskdruk, 270.

Powell, L. F., Cheney, T. E. A., Williamson, S., Guy, E., Smith, R. P., Davies, R. H. (2015). A prevalence study of Salmonella spp., Yersinia spp., Toxoplasma gondii and porcine reproductive and respiratory syndrome virus in UK pigs at slaughter. Epidemiology and Infection, 144 (7), 1538–1549. doi: http://doi.org/10.1017/s0950268815002794

Gygli, S. M., Borrell, S., Trauner, A., Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41 (3), 354–373. doi: http://doi.org/10.1093/femsre/fux011

Rutala, W. A., Weber, D. J. (2013). Disinfectants used for environmental disinfection and new room decontamination technology. American Journal of Infection Control, 41 (5), 36–41. doi: http://doi.org/10.1016/j.ajic.2012.11.006

Kochish, I. I., Kolomiets, S. N., Smirnov, S. L., Kochish, O. I. (2014). Izuchenie bakteritsidnogo deistviia preparata Anolit ANK. Vetkorm, 2, 30–31.

Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Journal of Ecology, 8 (1), 845–850. doi: http://doi.org/10.15421/2018_283

Hualpa, D., Ludena, F. (2015). Evaluation Germicidal of Disinfectants on Staphylococcus aureus and Escherichia coli. Journal of Bacteriology & Parasitology, s2. doi: http://doi.org/10.4172/2155-9597.1000232

Instruktsiia z provedennia sanitarnoi obrobky – dezinfektsii, dezinsektsii ta deratyzatsii obiektiv ptakhivnytstva (2007). Zatverdzhena nakazom Derzhavnoho departamentu veterynarnoi medytsyny Ministerstva ahrarnoi polityky Ukrainy 69. 20.06.2007.

Haute, S. van, Sampers, I., Jacxsens, L., Uyttendaele, M. (2013). Selection Criteria for Water Disinfection Techniques in Agricultural Practices. Critical Reviews in Food Science and Nutrition, 55 (11), 1529–1551. doi: http://doi.org/10.1080/10408398.2012.705360

McLaren, I., Wales, A., Breslin, M., Davies, R. (2011). Evaluation of commonly-used farm disinfectants in wet and dry models ofSalmonellafarm contamination. Avian Pathology, 40 (1), 33–42. doi: http://doi.org/10.1080/03079457.2010.537303

Palii, A. P., Palii, A. P. (2019). Tekhniko-tekhnolohichni innovatsii u molochnomu skotarstvi. Kharkiv: Miskdruk, 324.

Boyce, J. M., Sullivan, L., Booker, A., Baker, J. (2015). Quaternary Ammonium Disinfectant Issues Encountered in an Environmental Services Department. Infection Control & Hospital Epidemiology, 37 (3), 340–342. doi: http://doi.org/10.1017/ice.2015.299




DOI: http://dx.doi.org/10.21303/2504-5695.2019.00959

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Andriy Paliy, Anatoliy Paliy, Alexander Nanka, Olga Chalaya, Oleksandr Chalyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5695 (Online), ISSN 2504-5687 (Print)