THE GROWTH MODEL OF THE NUMBER OF INNOVATIVELY ORIENTED FIRMS AND THE SPATIAL DIFFUSION OF INNOVATIONS

Andrey Zhuravka, Tayo Musibau Mudashiru

Abstract


In conditions of transition of Ukraine to the model of innovative development, the transition from the mathematical models with lumped parameters to mathematical models with distributed parameters will be of great importance. This follows from the fact that technopolis can be represented in the form of regional innovation systems with distributed parameters (characteristics). Such system may include technology parks, scientific parks, innovation funds, venture and consulting firms, higher education institutions, business schools, service infrastructure servicing, etc.

Keywords


model of innovative development; number of innovatively oriented firms; spatial diffusion of innovations; technology parks; scientific parks; innovation funds; venture and consulting firms; higher education institutions; business schools serving the servi

Full Text:

PDF

References


Moskovkin, V. M. (1998). Osnovy koncepcii diffuzii innovacij. Biznes Inform, 17–18, 41–48.

Zhuravka, A. V., Moskovkin, V. M., Eleodzho O. (2014). Sutnist procesiv kooperaciyi v socialno-ekonomichnyh systemah. Ekonomika. Upravlinnya. Innovaciyi, 1 (11).

Zhuravka, A. V., Moskovkin, V. M., Eleodzho, O. (2013). Sutnist procesiv konkurenciyi v socialno-ekonomichnyh systemah. Ekonomika. Upravlinnya. Innovaciyi, 1 (9).

Zhuravka, A. V., Timofyeyev, V. O., Okeme Eleodzho.(2015). Modelyuvannya spilnoyi dynamiky VVP ta robochyh miscz. Ekonomika. Upravlinnya. Innovaciyi, 1 (13).

Zhuravka, A. V, Timofyeyev, V. O., Mudashyru Tajo Musbao. (2016). Matematychne modelyuvannya spilnoyi dynamiky robochoyi syly i vilnyh robochyh miscz na rynku praci. Ekonomika. Upravlinnya. Innovaciyi, 2 (17).

Moskovkin, V. M, Zhuravka, A. V. (2003). P'er–Fransua Verhul'st zabytyj pervootkryvatel' zakona logisticheskogo rosta i odin iz osnovatelej ekonomichesko dinamiki. Nauka ta naukoznavstvo, 2, 75–84.

Arrow, K. J., Intriligator, M. D. (1981). Handbook of Mathematical Economics Volume 1. North Holland, Amsterdam, 378.

Takeuchi, Y., Karmeshu. (1989). Dynamic model of three competing social groups. International Journal of Systems Science, 20 (11), 2125–2137. doi: 10.1080/00207728908910292

Gоndolfo, G. (1997). Economic Dynamics. Berlin: Springer-Verlag, 599.

Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique. Bruxelles, 10, 113–121.

Verhulst, P. F. (1845). Recherches mathematiques sur la loi d’accroissement de la population. Nouveaux Momoires de l’Academie Royale des Sciences et Belles Lettres de Bruxelles, 18, 1–38.

Vollterra, V. (1931). Lecons sur la theorie mathematique de la lutte pour la vie. Paris.

Vollterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. «Mem. Acad. Lincei», 2.

Dos-Santos, E. M. (1997). Evolutionist approach of upstream activities competitiveness of the petroleum industry in a long term perspective/Institute Francais du Petrole, 92  Rueil-Malmaison (France); Dijon Univ., 21 (France). Faculte des Sciences (Dissertation), 451.

Walter, I. (1999). Financial services strategies in the euro-zone. European Management Journal, 17 (5), 447–465. doi: 10.1016/s0263-2373(99)00031-6

Zang, V. B. (1999). Sinergeticheskaja jekonomika. Vremja i peremeny v nelinejnoj jekonomicheskoj teorii. Moscow: Mir, 336.

Wallerstein, J. (1984). The politic of the world-economy. Paris: Maison de Sci. de l’Homme, 295.

Gricaj, O. V., Ioffe, G. V., Trejvish, A. I. (1991). Centr i periferija v regional'nom razvitii. Moscow: Nauka, 168.




DOI: http://dx.doi.org/10.21303/2504-5571.2017.00321



Copyright (c) 2017 Andrey Zhuravka, Tayo Musibau Mudashiru

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2504-5571 (Online), ISSN 2504-5563 (Print)