1. Introduction

Today, various industries are increasingly using composite castings produced by various technologies. Recently, to obtain cast reinforced parts, the lost foam casting method [1, 2], as well as other new methods [3, 4], are increasingly used. The processes that occur during the formation of reinforced castings using new technologies have not yet been fully studied. And without an understanding of these processes, it is impossible to obtain quality parts with predictable properties.

When castings are obtained by reinforcing them with macroimplants located in the mold cavity or in the foam pattern, multicomponent systems new for the foundry theory arise: "metal-pattern-implant-mold" and "metal-reinforcing phase-mold". It is important to determine the conditions and relations of the influence of the reinforcing phase on the gas-hydrodynamic processes of the melt pouring, which will make it possible to determine the deterministic relationship between the technological parameters and ultimately control the quality of the casting [5].

A clear visual representation of the foundry processes is provided by physical and computer simulations. So computer simulation has been successfully used to study heat and mass transfer processes in castings with a macro-reinforcing phase oriented in the form of discrete elements [6]. However, hydrodynamic processes cannot always be adequately modeled using computer programs, since the algorithms and mathematical models underlying them have assumptions and do not take into account the influence of all parameters.

In connection with the known difficulties of a full-scale experiment, observations of the processes of flow of a liquid metal are carried out by the method of physical modeling using cold liquids [7]. For example, in [8], using this method, the hydrodynamics of mold casting with a close-packed reinforcing phase was successfully studied.

The study of casting a mold with a polystyrene foam model using the photographing technique [9] shows that the gas-hydrodynamic situation depends on various parameters, primarily on the alloy temperature, model density and coating thickness. However, in this work, the dependence of gas-hydrodynamic processes on the presence of the reinforcing phase and the magnitude of the vacuum, which, as the study [10] shows, has a significant effect on the quality of the bimetallic casting, was not studied.

2. Methods

The study of gas and hydrodynamic flows in the mold cavity filled with vertical metal elements (in our case rods), with the application of excess controlled pressure, was carried out on an experimental bench (Fig. 1) using the photographing technique.

The bench includes a mold model (casting) 1, which is mounted on a mounting plate 6, and a squeezing chamber 2, on a movable plate 8, which can move along the guides 5. The casting model is connected by feeders through an opening in a stationary press piston 3 with a squeezing chamber. In the center of the movable plate 8, the rod of the hydraulic cylinder 9 is connected, connected to the pump unit 10. A spool valve with a stepper motor is mounted to the pump unit 10. A spool valve with a stepper motor is mounted to the pump unit 10. A spool valve with a stepper motor is mounted to the pump unit 10. A spool valve with a stepper motor is mounted to the pump unit 10. A spool valve with a stepper motor is mounted to the pump unit 10.

Fig. 1. Scheme of the experimental bench: 1 – mold; 2 – squeezing chamber; 3 – press piston; 4 – displacement sensor; 5 – guides; 6, 7 – mounting plate; 8 – movable plate; 9 – hydraulic cylinder; 10 – pump unit; 11 – operational control system; 12 – control unit of step drive.
As the basic model of the form, a rectangular container with dimensions of 100×20×200 mm is chosen. Water is used as a model fluid.

3. Results

Fig. 3 shows the video frames of filling the cavity of the base model without reinforcing elements with a vacuum at the flow front equal to 0.025 kg/cm² (which, when converted to liquid steel, will be 0.175 kg/cm²). The process of filling the model is presented in 3 stages. The first stage is the entry into the cavity of the gushing free stream (frame a), then the stage of destruction of the free stream with the capture of inclusions of the gas phase (frame b). The final stage is the filling of the form with a continuous stream with the removal of smaller gas inclusions from the liquid volume (frame c).

With an increase in vacuum to a value of 0.05 kg/cm² (in kind – 0.35 kg/cm²), Fig. 4, the filling pattern of the model as a whole is preserved. The following parameters are changed: gushing up to a height of about 0.5 of the model’s height (frames a, b), filling out the form with a two-phase flow (liquid-gas phase), frames c–h. The stage of filling the form with a continuous stream is practically absent. After the model is completely filled, the process of removal of gas inclusions under the action of applied vacuum occurs.

The filling character of the form similar to that described above is observed at a rarefaction value of 0.075 kg/cm² (0.525 kg/cm² and 0.10 kg/cm² (0.70 kg/cm²). Only the following parameters are changed: the height of the gushing of the jet, increased capture of the gas phase by the fluid flow, more intensive mixing of the liquid volume. And, of course, the intervals of existence of the corresponding stages are reduced.

When installing the shape of vertical rods in the model, the general nature of the formation of flows is similar to the basic version. That is, depending on the working vacuum applied to the front of the moving fluid, the same steps are observed. An analysis of the video frames (Fig. 5) of filling out the mold model when the rods are arranged in type 1 (Fig. 2) shows that the presence of the rods has a certain effect on the liquid stream entering the bounded rectangular region.

It has been established that with an increase in the number of rods, the height of the gushing of the jet in the initial stage decreases. In addition, crushing by rods of a limited model space creates more favorable conditions for removing the filled gas phase from a moving stream.
4. Discussion and conclusions

As a result of experimental studies of gas-hydrodynamic processes of filling molds in which reinforcing elements are placed in the form of vertical rods, under excessive pressure it is found that in the mold at the initial stage of pouring, with an increase in vacuum, significant air capture occurs. The use of reinforcing elements in the form of vertical rods creates better conditions for the removal of the gas phase from the moving stream, as a result of which it is possible to recommend the use of a larger working vacuum. In this case, the filling time of the mold model, depending on the applied vacuum (without rods at $P_b=0.025 \text{ kg/cm}^2$, is $t=3 \text{ s}$, and at the maximum vacuum equal to $P_b=0.14 \text{ kg/cm}^2$, $t=0.5 \text{ s}$) decreases accordingly, due to a decrease in the volume of the mold cavity by 10–20%.

The experimental results confirm that, in the presence of a form of a reinforcing phase in the cavity, the process of its filling takes place in an almost continuous flow with a decrease in the height of the gushing of the metal jet, which is crushed by rods, which together with the applied rarefaction contributes to the complete removal of the gas phase from the metal. Moreover, these results can be applied in the presence of a reinforcing phase in an amount of 10–20% of the cavity volume, with a larger amount, a decrease in the temperature of the alloy, loss of casting speed and the absence of high-quality interfacial alignment.

References

Received date 07.10.2019
Accepted date 14.11.2019
Published date 23.11.2019

© The Author(s) 2019
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).