Olha Bambura, Oleksii Rezydent


One of the main constructive elements of roadmakers, railway bridge supports and structures is a compressed rod, to the end of which a follower force is applied. Recently, the most frequently used model of such rod in the form of an inverted mathematical pendulum under the influence of an asymmetric follower force. Asymmetry is due to the simultaneous presence of both angular and linear eccentricities. The work is devoted to the study of vertical and non-vertical states of equilibrium of a single pendulum. The reduced mathematical model of a single inverted mathematical pendulum is generalized, since it takes into account both the angular eccentricity and the linear eccentricity of the follower force. In addition, the coefficients of influence allow to consider all types of elastic elements (rigid, soft or linear). In this case, both elements can have characteristics of the same type or of different types. For direct integration of the differential equation of the pendulum motion, and also the decoupling of the corresponding Cauchy problem, the authors use the method of extending the parameter of the outstanding Japanese scientist Y.A. Shinohara. Varying of the angular eccentricity of the follower force at zero linear eccentricity results in the inverted pendulum having one or three non-vertical equilibrium positions. The type of characteristics of the elastic elements affects the maximum possible deviation from the vertical, at which the pendulum will be in a state of equilibrium. Analysis of the results of computer simulation shows that the orientation of the follower force for fixed values of other parameters of the pendulum has a significant effect on the configuration of the equilibrium curve


single pendulum; equilibrium states; follower force; bifurcations; mathematical model; orientation parameter; catastrophe; phase space; mechanical system; eccentricity

Full Text:



Lobas, L. H. (1998). Bifurkatsii statsyonarnukh sostoianyi i peryodycheskikh dvizhenyi konechnomernukh dinamicheskikh sistem s prosteishei symmetryei. Prikladnaya mekhanika, 1, 3–29.

Lobas, L. H., Lobas, L. L. (2004). Bifurkatsii, ustoychivost' i katastrofy sostoyaniy ravnovesiya dvoynogo mayatnika pod vozdeystviem asimmetrichnoy sledyashhey sily. Izvestiya RAN. Mekhanyka tverdoho tela, 4, 139–149.

Lobas, L. H., Lobas, L. L. (2002). Vliyanie orientatsii sledyashhey sily na oblasti ustoychivosti verkhnego polozheniya ravnovesiya perevernutogo dvoynogo mayatnika. Problemu upravlenyia i informatiki, 6, 26–33.

Lobas, L. H., Lobas, L. L. (2002). Modelirovanie dinamicheskoho povedeniia odnomernoho upruhoho tela pri vozdeistvii asymmetrichnoi slediashchei sily. Elektronnoe modelirovanie, 6, 19–31.

Jin, J.-D., Matsuzaki, Y. (1988). Bifurcations in a two-degree-of-freedom elastic system with follower forces. Journal of Sound and Vibration, 126 (2), 265–277. doi: 10.1016/0022-460x(88)90241-6

Koval’chuk, V. V., Lobas, V. L. (2004). Divergent Bifurcations of a Double Pendulum under the Action of an Asymmetric Follower Force. International Applied Mechanics, 40 (7), 821–828. doi: 10.1023/b:inam.0000046227.50540.17

Lobas, L. G. (2005). Dynamic Behavior of Multilink Pendulums under Follower Forces. International Applied Mechanics, 41 (6), 587–613. doi: 10.1007/s10778-005-0128-y

Lobas, L. G. (2005). Generalized Mathematical Model of an Inverted Multilink Pendulum with Follower Force. International Applied Mechanics, 41 (5), 566–572. doi: 10.1007/s10778-005-0125-1

Lobas, L. G., Koval’chuk, V. V. (2005). Influence of the Nonlinearity of the Elastic Elements on the Stability of a Double Pendulum with Follower Force in the Critical Case. International Applied Mechanics, 41 (4), 455–461. doi: 10.1007/s10778-005-0110-8

Lobas, V. L. (2005). Influence of the Nonlinear Characteristics of Elastic Elements on the Bifurcations of Equilibrium States of a Double Pendulum with Follower Force. International Applied Mechanics, 41 (2), 197–202. doi: 10.1007/s10778-005-0077-5

Shinohara, Y. (1972). A geometric method for the numerical solution of nonlinear equations and its application to nonlinear oscillations. Publications of the Research Institute for Mathematical Sciences, 8 (1), 13–42. doi: 10.2977/prims/1195193225



  • There are currently no refbacks.

Copyright (c) 2017 Olha Bambura, Oleksii Rezydent

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2585-6847 (Online), ISSN 2585-6839 (Print)