PLASMA TECHNOLOGIES FOR THE PROTECTION OF RADIO ELECTRONIC MEANS FROM EXPOSURE TO HIGH–POWER ELECTROMAGNETIC RADIATIONS WITH ULTRASHORT PULSE DURATION

Maksym Iasechko

Abstract


The urgency of the improvement of methods and means of protection of radio electronic means (REM) due to the development and application of high–power electromagnetic radiation (EMR) generators with ultrashort pulses duration (UPD) is substantiated. It is pointed out that it is possible to solve the problem of REM protection by the complex application of plasma technologies using gaseous and modified solid–state media.

By analyzing the known achievements in the field of developing effective methods and creating protection facilities for REM, a number of unresolved problems in the field of creation of plasma protection technologies have been determined.

The technique of solving the formulated problems is presented and the main relations are obtained to determine the expediency of using the proposed technology in the interests of the REM integrated protection from the powerful EMR UPD.

A relation is made for the breakdown criterion in a gaseous plasma medium that relates the value of the breakdown field to the concentration of charged particles determined by the ionization source. The structure of a solid–state plasma medium is described, which can be used as a protective shield. The order of finding the REM screening coefficient is shown, based on the determination of the distribution function of charged particles for finding the main macroscopic properties of plasma by solving the kinetic equation of the Lenard–Balescu equation. A relation is given for the damping coefficient of an electromagnetic wave in solid–state plasma. Numerical estimates are presented in the form of graphs showing the possibility of using plasma technology to protect the REM from a powerful EMR through possible channels of penetration. The discussion of the obtained results is presented and it is indicated on the possibility and prospects of using the proposed technology for REM protection, especially with limitations on the weight dimensions of protection devices

Keywords


radio electronic means; electromagnetic radiation; ultrashort pulse duration; plasma protection technologies; gaseous and solid–state plasma media; hexaferrite inclusions

Full Text:

PDF

References


Balyuk, N. V., Kechiev, L. N., Stepanov, P. V. (2007). Moshhnyy elektromagnitnyy impul's: vozdeystvie na elektronnye sredstva i metody zashhity. Moscow: OOO «Gruppa ITD», 478.

Vorobiov, O., Savchenko, V., Sotnikov, A., Tarshyn, V., Kurtseitov, T. (2017). Development of radioisotopic–plasma technology for the protection of radio electronic means from powerful electromagnetic radiation. Eastern–European Journal of Enterprise Technologies, 1 (5 (85)), 16–22. doi: 10.15587/1729–4061.2017.91642

Skoblikov, O., Knyazyev, V. (2012). Shielding Properties of Conductive Shells Exposed to Electromagnetic Impulse of Lightning. International Conference on Lightning Protection (ICLP'2012). Vienna, 1–8.

Makhno, S. N., Gorbik, P. P. (2010). Vzaimodeystvie elektromagnitnogo izlucheniya s veshhestvom: nekotorye napravleniya razvitiya issledovaniy i perspektivy prakticheskogo ispol'zovaniya. Poverkhnost', 2 (17), 14–18.

Barsova, Z. V., Cwhanovskaya, I. V., Barsova, Z. V., Iluoykha, N. G. (2012). Chemistry and technology of magnetite and barium–containing composite materials on its basis. European Science and Technology. Wiesbaden, 80–87.

Fazaeli, R., Eslami–Farsani, R., Targhagh, H. (2015). Microwave Absorption Properties of Low Density Polyethelene–Cobalt Ferrite Nanocomposite. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 9 (12), 1450–1453.

Liu, T., Zhou, P. H., Xie, J. L., Deng, L. J. (2011). The hierarchical architecture effect on the microwave absorption properties of cobalt composites. Journal of Applied Physics, 110 (3), 033918. doi: 10.1063/1.3622144

Petrov, V., Nikolaychuk, G., Yakovlev, S., Lutsev, L. (2008). Issledovanie radiopogloshhayushhikh svoystv materialov na osnove nanostruktur. Komponenty i tekhnologii, 12, 141–146.

Mazov, I. N., Kuznetsov, V. L., Moseenkov, S. I., Ishchenko, A. V., Romanenko, A. I., Anikeeva, O. B. et. al. (2010). Electrophysical and Electromagnetic Properties of Pure MWNTs and MWNT/PMMA Composite Materials Depending on Their Structure. Fullerenes, Nanotubes and Carbon Nanostructures, 18 (4–6), 505–515. doi: 10.1080/1536383x.2010.488184

Sotnikov, O. M., Kryzhnyi, A. V., Vorobiov, O. M. (2013). Rozrobka struktury materialu zakhysnykh ekraniv radioelektronnykh zasobiv ozbroiennia i viiskovoi tekhniky vid vplyvu potuzhnykh elektromahnitnykh vyprominiuvan ultrakorotkoi tryvalosti impulsu. Trudy Universytetu. Kyiv: Natsionalnyi universytet oborony Ukrainy, 6 (120), 187–191.




DOI: http://dx.doi.org/10.21303/2585-6847.2017.00480

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Maksym Iasechko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2585-6847 (Online), ISSN 2585-6839 (Print)