LEFT VENTRICULAR HYPERTROPHY AND LEFT ATRIAL DILATATION AS MARKERS OF MALIGNANT ARRHYTHMIAS DEVELOPMENT

Yuliia Shushkovska
Associate Professor
suskovskaaulia@gmail.com

Oksana Afanasiuk
PhD, Associate Professor
o.afanasiuk@gmail.com

1Department of Internal Medicine No. 3
Pirogov National Memorial Medical University
56 Pirogova str., Vinnytsya, Ukraine, 21018

Abstract: One of the pressing problems of modern cardiology is the study of the etiological and risk factors for sudden cardiac death (SCD). Arrhythmias, which in most cases correlate with signs of myocardial hypertrophy, are important for its occurrence. The most common cause of LVH is hypertension. However, an equally important trigger mechanism for malignant arrhythmias is coronary heart disease (CHD). It is known that LVH is considered as an independent risk factor for cardiovascular complications.

Methods. The study design included an assessment of the effect of cardiac remodelling, the degree of LVH, and the degree of dilatation of left atrium (LA) on the development of malignant disorders of rhythm and conduction of the heart (DRCH). 78 patients with II degree of hypertension were examined. Patients were divided into two groups depending on the presence of CHD. In each group, there were malignant rhythm and conduction disorders. The control group consisted of 20 healthy people.

Results and discussion. The stages of LVH were equally represented in both groups, but the concentric LVH, the initial degree of LVH, and the dilatation of LA predominated. In patients with malignant DRCH, a moderate degree of LVH predominated. Significantly, more likely malignant DRCH occurred in the second group and presented with high-grade ventricular extrasystoles, prolonged QT interval, and sinus node weakness syndrome.

Keywords: malignant arrhythmias of the heart, hypertension, coronary heart disease, left ventricular hypertrophy.

1. Introduction

One of the pressing problems of modern cardiology is the study of the etiological and risk factors for SCD. Arrhythmias, which in most cases correlate with signs of myocardial hypertrophy, are important for its occurrence. The most common cause of LVH is hypertension. However, an equally important trigger mechanism for malignant arrhythmias is coronary heart disease (CHD).

In CHD, myocardium is affected; metabolic processes and energy metabolism in cardiomyocytes are disrupted, which in turn leads to arrhythmias [1].

LVH is known to be considered as an independent risk factor for cardiovascular complications (myocardial infarction, heart failure (HF), arrhythmias, etc.) [2]. Among the mechanisms of the development of LVH may be considered an episode of hypoxia and ischemia, which in turn leads to the development of post-ischemic cardiomyocyte dysfunction and an increase in energy deficiency in them [3].

Studies have shown that there is some pattern between the mass of the left ventricle (LV) myocardium and the occurrence of cardiovascular catastrophes, including SCD. It has been proved that the myocardial need for oxygen increases and its ectopic activity increases with LVH [3].

It is known that in concentric LVH the thickness of the walls of the myocardium increases and the volume of the cavity of the LV decreases, while in the eccentric, on the contrary, the normal thickness of the walls of the LV decreases and the volume of its cavity increases. Literature evidence indicates that concentric LVH is associated with the highest risk of cardiovascular complications and the worst prognosis [4].

Studies have shown that the larger the LV myocardial mass index (LV MMI), the greater the size of the LA. It is proved that with increasing size of LA for every 5 mm the relative risk of atrial fibrillation increases 4 times [5].

Not all arrhythmias are equally significant for the prognosis of the patient’s disease and life. In this regard, the clinical and prognostic classification of arrhythmias and cardiac conduction disorders, depending on their severity, is of some clinical importance for predicting the occurrence of various cardiovascular complications and their potential for prevention [6].

The literature describes the importance of LVH in the development of cardiac arrhythmias, which in turn lead to cases of SCD. However, it should be noted that there are insufficient reports on the features of the types and degrees of LVH, dilatation of the LA, which would most likely lead to malignant arrhythmias.

The purpose of the study was to investigate the possible effects of different types and degrees of LVH and LA dilatation on the development of malignant arrhythmias in arterial hypertension, depending on the presence or absence of CHD.

2. Material and methods

The study was conducted at the Vinnytsya Regional Clinical Medical Diagnostic Center for Cardiovascular Pathology during 2014–2017.

The criteria for inclusion in the study were patients with hypertension, various DRCH with or without CHD. Exclusion criteria were acute coronary syndrome, HF of IV functional class (FC) according to NYHA classification, presence of permanent atrial fibrillation, previously diagnosed idiopathic cardiomyopathies, myocarditis, severe kidney disease, liver, lung, and neoplasm.

The study design included an assessment of the effect of cardiac remodelling, the degree of LVH, and the degree of LA dilatation on the development of malignant arrhythmias of the heart, hypertension, various DRCH, myocarditis, severe kidney disease, liver, lung, and neoplasm. The control group consisted of 20 healthy people.

The study was conducted according to basic ethical standards Helsinki Declaration and the Council of Europe for Human Rights and Biomedicine (1997). The study was conducted at the Vinnytsya Regional Clinical Medical Diagnostic Center for Cardiovascular Pathology, depending on the presence or absence of CHD.

The patients underwent a standard comprehensive clinical laboratory and instrumental examination: ECG in 12 conventional leads, blood lipid spectrum, blood glucose, biochemical...
analysis of blood, Echocardiography in M- and B-modes, Holter ECG monitoring, 6-minute stroke test angina or HF.

Determined the types of LV remodelling according to Genau (1992), and the degrees of LVH by V. Denesiuk, O. Denesiuk (Table 1) [6, 7].

Table 1
Criteria for the diagnosis of degrees of left ventricular hypertrophy in cardiovascular diseases according to Echocardiography

<table>
<thead>
<tr>
<th>Degrees of LVH according to echocardiography</th>
<th>Left ventricular myocardial mass index, g/m²</th>
<th>Thickness of the interventricular septum, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>In healthy people</td>
<td>male ≤110</td>
<td>male ≤ 1.0</td>
</tr>
<tr>
<td></td>
<td>woman ≤ 95</td>
<td>woman ≤ 0.9</td>
</tr>
<tr>
<td>I (initial)</td>
<td>male 111–170</td>
<td>male 1.01–1.19</td>
</tr>
<tr>
<td></td>
<td>woman 96–160</td>
<td>woman 0.91–1.15</td>
</tr>
<tr>
<td>II (moderate)</td>
<td>male 171–205</td>
<td>male 1.20–1.34</td>
</tr>
<tr>
<td></td>
<td>woman 161–190</td>
<td>woman 1.16–1.29</td>
</tr>
<tr>
<td>III (significant)</td>
<td>male ≥205</td>
<td>male ≥1.35</td>
</tr>
<tr>
<td></td>
<td>woman ≥191</td>
<td>woman ≥1.30</td>
</tr>
</tbody>
</table>

Note: 1 – in cases where the parameters of LV MMI and the thickness of the interventricular septum (TIVS) are different and do not correspond to the specified degree of LVH, as a basis, it is advisable to take LV MMI, on which to determine its degree of expression; 2 – LV MMI is normal, and the index of TIVS corresponds to the II degree of LVH, then we expose the I degree of LVH

Echocardiography was performed on all patients. Comparative analysis was subjected to a control group (healthy patients) with each group of patients with hypertension. The likelihood of difference (p>0.05) of LV MMI values, LA size, volume systolic and diastolic indices, and ejection fraction (EF) of patients without CHD and CHD compared with healthy people and the probability of difference (p≤0.01) values of the interventricular and posterior walls of the LV compared with healthy people. However, no validity was found between and without cohorts of patients with CHD, suggesting the same development of LVH in patients in both cohorts, which was not dependent on the development of changes in CHD. In addition, no significant differences were found in the comparative characteristics of patients with malignant arrhythmias in patients in both groups. The results of echocardiography indicated the development of different types of LVH with preserved systolic heart function. Such changes lead to impaired cardiac muscle relaxation and increase myocardial stiffness, promoting the development of HF and capable of provoking the onset of DRCH.

The conducted analysis of the Echocardiography study allowed dividing the patients by types of heart remodelling according to Genau, degrees of LVH by V. Denesiuk, O. Denesiuk and the degree of dilatation of LA of both groups and depending on the available malignant arrhythmias. No significant differences were found in patients from both groups and when comparing patients with malignant DRCH. However, it should be noted that all patients were dominated by concentric hypertrophy for Genau, which confirms a higher incidence of DRCH. This type of hypertrophy of the LV occurs as a compensatory mechanism, ensuring normal circulation with elevated blood pressure. Over time, the compensatory properties weaken, the incidence of HF increases, and the risk of SCD increases significantly [9]. The mean was (77.19±2.49) % and eccentric hypertrophy was (15.5±3.25) %. When comparing the rates of V. Denesiuk by V. Denesiuk, O. Denesiuk, the patients of both groups showed a predominance of the initial degree of LVH, which was already accompanied by the development of DRCH and the initial degree of dilatation of LA. In comparison of both groups with malignant arrhythmias – a moderate degree of LVH and a significant degree of predominance p>0.05 there was a more frequent occurrence of LA dilatation in patients with hypertension in combination with CHD and existing malignant DRCH, which can be caused by the increase of paroxysmal and persistent forms of atrial fibrillation, which according to V. I. Denesiuk was not classified as malignant.
4. Discussion and conclusions

Comparative characteristics of the types of malignant DRCH in two groups were conducted. Thus, the most common type of malignant DRCH were ventricular extrasystoles 3–5 gradations according to Laun, which occurred significantly (p<0.05) more frequently in patients of group II (with coronary heart disease). In addition, in second group, 1 (2.63 %) patient experienced QT prolongation on the background of amiodarone administration and 2 (5.26 %) patients experienced sinus node weakness syndrome, which was absent in group I patients. It should be noted that all DRCH in both groups occurred only with hypertrophic LVH and the initial stages of LVH and dilatation of LA. The obtained data are confirmed by other authors [10], who indicate an increase in the frequency of QT prolongation on the background of arrhythmic drugs, with an increase in the degree of LVH.

In patients with hypertension and coronary heart disease, malignant rhythm and conduction of the heart are significantly more likely to occur with a greater degree of functional class of stable angina and heart failure, and regardless of the duration of coronary heart disease and hypertension.

The highest frequency of various malignant disorders occurs in concentric left ventricular hypertrophy, regardless of the presence of coronary heart disease.

Malignant abnormalities of rhythm and conduction of the heart occur even with the initial degree of left ventricular hypertrophy and left atrial dilatation and increase with hypertrophy in patients in both groups.

Among the malignant disorders in the overwhelming number occur ventricular extrasystoles 3–5 gradations according to Laun in both groups, and significantly more often in combination with coronary heart disease, contributes to the development of the probability of acquired QT syndrome against the background of taking amiodarone, which may in turn develop malignant and fatal heart rhythm disorders.

Coronary heart disease may be an additional provocative risk factor for malignant heart rhythm disorders.

The proposed determination of the degree of left ventricular hypertrophy and left atrial dilatation in patients with hypertension allows to evaluate in more detail and specifically the cardiac remodeling and possibly to determine the gradual regression of left ventricular hypertrophy on the background of treatment.

Taking into account the revealed data on the dependence of the development of malignant arrhythmias on the functional class of stable angina and heart failure, it is necessary to evaluate the influence of indicators of lipid metabolism and the degree of damage of the coronary bed atherosclerotic process on the development of malignant disorders of rhythm and conduction.

Conflict of interests

No conflict of interest.

References


Received date 06.09.2019
Accepted date 16.10.2019
Published date 30.10.2019

© The Author(s) 2019
This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0).