Ludmila Oreshko, Elena Semenova, Alexander Shomin, Stanislav Sitkin


Aim: to investigate a fecal microbiota composition and to identify candidate biomarkers of celiac disease (CD) by serum metabolomics analysis.

Methods: the quantitative real-time polymerase chain reaction was used for fecal microbiota assessment. Serum metabolomic assays were conducted using the GC–MS.

Results: serum of CD patients showed significant increases in stearic acid, 2-HIVA, succinate, fumarate and benzoate compared to HC. A decrease in the level of eicosadiene and an increase in AA in blood were determined. The ratio of AA to EDA was statistically significant (4.84 vs. 3.28, p=0.033). The elongase activity index in patients with celiac disease tended to increase (p=0.067). The colon microbiome in CD was characterized by decreasing in the level of butyrate-producing Faecalibacterium prausnitzii (F.p.) and Bifidobacterium spp.. Significant negative correlations were observed; between the levels of Bifidobacterium spp. and F.p. and the concentration of succinic acid (rs=–0.343 [p=0.026] and rs=–0.430 [p=0.005], respectively); the F.p. and the fumaric acid (r=–0.429, p=0.005); the benzoic acid and the amount of Bifidobacterium spp. (r=–0.341, p=0.025).

Conclusion: significant changes in serum levels of microbial and endogenous metabolites, reflecting some metabolic pathways disturbances were observed in CD. Metabolites and metabolomic index reflecting the balance between pro-inflammatory and anti-inflammatory components, may be considered as candidate biomarkers of chronic inflammation and metabolic dysbiosis in CD. An increased B. fragilis/F.p. ratio can serve as available biomarker for intestinal pro-inflammatory dysbiosis in CD.


butyrate; butyric acid; celiac disease; dysbiosis; Faecalibacterium prausnitzii; gut microbiota; serum metabolome; biomarkers; metabolomics

Full Text:



Thursby, E., Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474 (11), 1823–1836. doi:

Verdu, E. F., Galipeau, H. J., Jabri, B. (2015). Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 12 (9), 497–506. doi:

Marasco, G., Di Biase, A. R., Schiumerini, R., Eusebi, L. H., Iughetti, L., Ravaioli, F. et. al. (2016). Gut Microbiota and Celiac Disease. Digestive Diseases and Sciences, 61 (6), 1461–1472. doi:

Lazebnik, L. B., Tkachenko, E. I., Oreshko, L. S., Sitkin, S. I., Karpov, A. A., Nemtsov, V. I. et. al. (2015). Guidelines for diagnosis and treatment of celiac disease. Experimental and clinical gastroenterology, 5 (117), 3–12.

Wapenaar, M. C., Monsuur, A. J., van Bodegraven, A. A., Weersma, R. K., Bevova, M. R., Linskens, R. K. et. al. (2007). Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitisAn unusual case of ascites. Gut, 57 (4), 463–467. doi:

Miner-Williams, W. M., Moughan, P. J. (2016). Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutrition Research Reviews, 29 (1), 40–59. doi:

Pastorelli, L., De Salvo, C., Mercado, J. R., Vecchi, M., Pizarro, T. T. (2013). Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 4, 280. doi:

McCole, D. F. (2014). IBD Candidate Genes and Intestinal Barrier Regulation. Inflammatory Bowel Diseases, 20 (10), 1829–1849. doi:

Sitkin, S. I., Tkachenko, E. I., Vakhitov, T. Ya., Oreshko, L. S., Zhigalova, T. N., Avalueva, E. B. (2014). Serum metabolome and gut microbiota in ulcerative colitis and celiac disease. Newsletter of North-Western State Medical University named after I. I. Mechnikov, 6 (3), 12–22.

De Palma, G., Nadal, I., Collado, M. C., Sanz, Y. (2009). Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. British Journal of Nutrition, 102 (8), 1154–1160. doi:

Brown, K., DeCoffe, D., Molcan, E., Gibson, D. L. (2012). Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 4 (8), 1095–1119. doi:

Verbeke, K. A., Boobis, A. R., Chiodini, A., Edwards, C. A., Franck, A., Kleerebezem, M. et. al. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28 (1), 42–66. doi:

Osipov, G. A., Zybina, N. N., Rodionov, G. G. (2013). Experience in the use of mass spectrometry of microbial markers in laboratory diagnostics. Medical Alphabet, 1 (3), 64–67.

Al-Toma, A., Volta, U., Auricchio, R., Castillejo, G., Sanders, D. S., Cellier, C. et. al. (2019). European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterology Journal, 7 (5), 583–613. doi:

Smith, B., Li, N., Andersen, A. S., Slotved, H. C., Krogfelt, K. A. (2011). Optimising Bacterial DNA Extraction from Faecal Samples: Comparison of Three Methods. The Open Microbiology Journal, 5 (1), 14–17. doi:

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S. et. al. (2011). The Human Serum Metabolome. PLoS ONE, 6 (2), e16957. doi:

Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y. et. al. (2012). HMDB 3.0 – The Human Metabolome Database in 2013. Nucleic Acids Research, 41 (D1), D801–D807. doi:

Russell, W. R., Duncan, S. H., Scobbie, L., Duncan, G., Cantlay, L., Calder, A. G. et. al. (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Molecular Nutrition & Food Research, 57 (3), 523–535. doi:

Gonthier, M. P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J. M., Poutanen, K., Aura, A. M. (2006). Microbial metabolism of caff eic acid and its esters chlorogenic and caft aric acids by human faecal microbiota in vitro. Biomedicine & Pharmacotherapy, 60 (9), 536–540. doi:

Quehenberger, O., Armando, A. M., Brown, A. H., Milne, S. B., Myers, D. S., Merrill, A. H. et. al. (2010). Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research, 51 (11), 3299–3305. doi:



  • There are currently no refbacks.

Copyright (c) 2019 Ludmila Oreshko, Elena Semenova, Alexander Shomi, Stanislav Sitkin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2585-6634 (Online), ISSN 2585-6626 (Print)